留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北大西洋多年代际振荡(AMO)对南海夏季风撤退年代际变率的影响及可能机理

宋成玉 汪靖 柳艳菊 李巧萍 丁一汇 沈新勇

宋成玉,汪靖,柳艳菊,李巧萍,丁一汇,沈新勇. 2022. 北大西洋多年代际振荡(AMO)对南海夏季风撤退年代际变率的影响及可能机理. 气象学报,80(5):668-684 doi: 10.11676/qxxb2022.050
引用本文: 宋成玉,汪靖,柳艳菊,李巧萍,丁一汇,沈新勇. 2022. 北大西洋多年代际振荡(AMO)对南海夏季风撤退年代际变率的影响及可能机理. 气象学报,80(5):668-684 doi: 10.11676/qxxb2022.050
Song Chengyu, Wang Jing, Liu Yanju, Li Qiaoping, Ding Yihui, Shen Xinyong. 2022. Impacts of AMO on the interdecadal variability of South China Sea summer monsoon withdrawal and associated mechanisms. Acta Meteorologica Sinica, 80(5):668-684 doi: 10.11676/qxxb2022.050
Citation: Song Chengyu, Wang Jing, Liu Yanju, Li Qiaoping, Ding Yihui, Shen Xinyong. 2022. Impacts of AMO on the interdecadal variability of South China Sea summer monsoon withdrawal and associated mechanisms. Acta Meteorologica Sinica, 80(5):668-684 doi: 10.11676/qxxb2022.050

北大西洋多年代际振荡(AMO)对南海夏季风撤退年代际变率的影响及可能机理

doi: 10.11676/qxxb2022.050
基金项目: 广东省基础与应用基础研究重大项目(2020B0301030004)、第二次青藏高原综合科学考察研究项目(2019QZKK0102、2019QZKK0208)、中国科学院战略性先导科技专项(XDA20100304)
详细信息
    作者简介:

    宋成玉,从事季风与海-气相互作用方面研究。E-mail:chengyu0622@qq.com

    通讯作者:

    柳艳菊,从事季风动力学和气候变化等方面研究。E-mail:liuyanj@cma.gov.cn

  • 中图分类号: P425.4+3   P434

Impacts of AMO on the interdecadal variability of South China Sea summer monsoon withdrawal and associated mechanisms

  • 摘要: 基于美国国家海洋和大气管理局(NOAA)物理科学实验室(PSL)和科罗拉多大学环境科学研究所(CIRES)重建的NOAA-CIRES 20th再分析数据和国际综合海洋大气数据集(ICOADS)的全球月海表温度数据(ERSST),并结合数值试验分析了南海夏季风撤退的年代际变率特征及北大西洋多年代际振荡(AMO)对其产生的影响。结果表明,南海夏季风撤退时间具有明显的年代际变率,南海夏季风撤退偏晚(早)年代中国南海及其附近区域上空有显著的气旋性(反气旋性)环流异常,降水偏多(少)。进一步研究发现,AMO与南海夏季风撤退年代际变率呈显著正相关,即AMO为正位相时,南海夏季风撤退偏晚;AMO为负位相时,南海夏季风撤退偏早。北大西洋海温升高(即AMO位于正位相),从海洋释放更多的热通量到大气,导致北大西洋上空对流层的对流活动明显增强,通过海-气相互作用激发北大西洋上空的波活动异常,进而影响与东北亚关键区域大气环流变化密切相关的中纬度欧亚遥相关波列的形成和传播,引起东北亚关键区的正位势高度异常和明显的下沉运动,并在其对流层低层产生辐散运动,能量伴随着偏北的辐散风气流传播至中国南海及邻近区域辐合上升,进一步加强了南海区域的气旋性环流异常,使得南海夏季风撤退偏晚。AMO负位相时,异常情况与之大致相反,使得南海夏季风撤退偏早。

     

  • 图 1  1900—2014年南海夏季风撤退时间序列 (单位:候;黑色虚折线为1951—2014年国家气候中心监测的南海夏季风撤退时间序列;深灰色曲线为9 a低通滤波;垂直虚线为根据滑动t检验得到的南海夏季风撤退时间出现年代际转变的分界线)

    Figure 1.  Time series of the South China Sea summer monsoon withdrawal (SCSSMW) from 1900 to 2014 (unit:pentad;the black dashed line is the time series of SCSSMW monitored by the NCC from 1951 to 2014;the dark gray curve represents 9-year low-pass filtering;the vertical dashed lines are the dividing lines of the interdecadal transition of SCSSMW time obtained by the moving t-test)

    图 2  南海夏季风撤退日期年代际指数 (SCSSMWI) 回归的1904—2010年9月 (a) 850 hPa假相当位温 (单位:K) 和 (b) 降水异常 (单位:mm/d)(黑框代表中国南海区域;点状区域表示超过95%置信度;所有变量均去趋势并进行9 a低通滤波,下同)

    Figure 2.  September (a) 850 hPa potential pseudo-equivalent temperature (unit:K) and (b) precipitation anomalies (unit:mm/d) regressed on the interdecadal index of the South China Sea summer monsoon withdrawal date (SCSSMWI) from 1904 to 2010 (the black box represents the South China Sea area;the dots indicate the values exceeding the 95% confidence level;all variables are detrended and 9-year low-pass filtered,the same hereafter)

    图 3  SCSSMWI回归的1904—2010年53—56候平均的 (a) 850 hPa、(b) 500 hPa、(c) 200 hPa水平风 (矢线,单位:m/s) 及位势高度 (色阶,单位:gpm)(黑色矢量与点状区域均表示超过95%置信度)

    Figure 3.  53—56 pentad mean (a) 850 hPa,(b) 500 hPa and (c) 200 hPa horizontal wind (vector,unit:m/s) and geopotential height (shading,unit:gpm) regressed on SCSSMWI from 1904 to 2010 (black vectors and white dots indicate values exceeding the 95% confidence level)

    图 4  SCSSMWI回归的1904—2010年53—56候平均的 (a) 700 hPa垂直速度 (单位:10−2 Pa/s)、(b) 垂直积分的水汽通量 (矢线,单位:kg/(m·s)) 及其散度 (色阶,单位:10−5 kg/(m2·s))(点状区域表示超过95%置信度)

    Figure 4.  53—56 pentad mean (a) 700 hPa vertical velocity (unit:10−2 Pa/s),(b) vertically integrated WVT (vector,unit:kg/(m·s)) and WVT_div (shading;unit:10−5 kg/(m2·s)) regressed on SCSSMWI from 1904 to 2010 (dots indicate values exceeding the 95% confidence level)

    图 5  (a) 1904—2010年SCSSMWI与9月海温年代际变化的相关分布 (打点区域表示通过95%置信度检验;蓝色虚线框表示北大西洋海温变化的关键区);(b) 1904—2010年标准化的SCSSMWI (红色虚线) 与9月AMO指数 (蓝色虚线) 时间序列 (所有指数均去趋势并进行9 a低通滤波;灰色虚线为1932年分割线;R为1932—2010年SCSSMWI与AMO指数的相关系数,并通过95%置信度检验);(c) 1904—2010年AMO和SCSSMWI指数的小波交叉谱分析 (黑色实线包围区代表通过了95%置信度的红噪声检验区域;相对位相关系用矢量表示:向右/左箭头代表同/反位相关系,向下/上箭头代表AMO超前/滞后于SCSSMWI)

    Figure 5.  (a) Spatial distribution of correlation coefficient between SCSSMWI and September sea surface temperature (SST) interdecadal changes for 1904—2010 (dots indicate values passing the 95% confidence level;the blue dotted box shows the key area of SST anomalies in the North Atlantic); (b) Time series of normalized SCSSMWI (red dashed line) and September AMO index (blue dashed line) for 1904—2010 (all indices are detrended and 9-year low-pass filtered;the gray dotted line is the 1932 dividing line;R is the correlation coefficient between SCSSMWI and AMO index from 1932 to 2010,which passes the 95% confidence level); (c) Wavelet cross spectrum analysis of time series of AMO and SCSSMWI for 1904—2010 (areas covered by the black solid lines represent the 95% confidence level against background noise;the relative phase relations are represented by vectors;right/left arrows represent positive/negative relations;down/up arrows represent AMO leads/lags SCSSMWI)

    图 6  SCSSMWI回归的1932—2010年9月北大西洋区域 (a) 海温 (单位:℃)、(b) 700 hPa垂直速度 (单位:10−2 Pa/s)、(c) 总云量 (单位:%)、(d) 降水 (单位:mm/d) 和 (e) 非绝热加热 (单位:W/m2)(打点区域表示超过95%置信度)

    Figure 6.  September (a) sea surface temperature (SST,unit:℃),(b) 700 hPa vertical velocity (unit:10−2 Pa/s),(c) total cloud cover (unit:%),(d) precipitation (unit:mm/d) and (e) diabatic heating (unit:W/m2) over the North Atlantic region regressed on SCSSMWI from 1932 to 2010 (the dots represent values exceeding the 95% confidence level)

    图 7  AMO年代际指数回归1932—2010年53—56候平均的 (a) 850 hPa水平风 (矢线,单位:m/s) 及位势高度 (色阶,单位:gpm)、(b) 垂直-经向剖面的75°—7.5°W区域纬向平均的垂直速度 (色阶,单位:10−2 Pa/s) 以及与辐散风经向分量的合成量 (矢线,单位:m/s)(a中黑色矢量与打点区域均表示超过95%置信度;b中打点区域表示超过95%置信度)

    Figure 7.  53—56 pentad mean (a) 850 hPa horizontal wind (vector,unit:m/s) and geopotential height (shading,unit:gpm),(b) vertical-horizontal cross section of vertical velocity averaged along 75°—7.5°W (shadings,unit:10−2 Pa/s) and divergent meridional wind (vector,unit:m/s) regressed on AMO interdecadal index from 1932 to 2010 (black vectors and white dots indicate values exceeding the 95% confidence level in a;dots indicate values exceeding the 95% confidence level in b)

    图 8  AMO年代际指数回归1932—2010年53—56候平均的300 hPa波源 (色阶,单位:10−11 s−2)、速度势 (等值线,单位:105 m2/s) 及辐散风 (矢量,单位:m/s)(打点区表示超过95%置信度)

    Figure 8.  53—56 pentad mean 300 hPa Rossby wave source (RWS,shading,unit:10−11 s−2),velocity potential (contour,unit:105 m2/s) and divergence wind (vector,unit:m/s) over the North Atlantic region regressed on AMO interdecadal index from 1932 to 2010 (dots represent values exceeding the 95% confidence level)

    图 9  AMO年代际指数回归1932—2010年53—56候平均的 (a) 300 hPa、(b) 垂直-纬向剖面的42.5°—55°N区域经向平均的波活动通量 (矢线,单位:m2/s2) 和流函数 (色阶,单位:106 m2/s)(a中绿色虚线框表示东北亚关键区,b中的绿色垂直虚线为东北亚关键区域经度范围 (110°—140°E);打点区表示超过95%置信度)

    Figure 9.  53—56 pentad mean (a) 300 hPa and (b) vertical-horizontal cross section averaged along 42.5°—55°N of wave activity flux (WAF,vector,unit:m2/s2) and stream function (shading,unit:106 m2/s) regressed on AMO interdecadal index from 1932 to 2010 (the green dashed box in (a) indicates the key area of Northeast Asia (NEA), the green vertical dashed lines in (b) represent the NEA longitude range (110°—140°E), dots represent values exceeding the 95% confidence level)

    图 10  AMO年代际指数回归1932—2010年53—56候平均的垂直-经向剖面的110°—140°E区域纬向平均的垂直速度 (色阶,单位:10−2 Pa/s) 以及与辐散风经向分量的合成量 (矢线,单位:m/s)(打点区表示超过95%置信度,小于95%置信度的矢量未给出;灰色垂直虚线表示南海季风监测区纬度范围 (10°—20°N),绿色垂直虚线为东北亚关键区域纬度范围 (42.5°—55°N))

    Figure 10.  53—56 pentad mean vertical-horizontal cross section averaged along 110°—140°E of vertical velocity (shading,unit:10−2 Pa/s) and divergent meridional wind (vector,unit:m/s) regressed on AMO interdecadal index from 1932 to 2010 (dots represent values exceeding the 95% confidence level;vectors of less than 95% confidence level are not shown;the gray vertical dotted lines indicate latitude range (10°—20°N) of South China Sea summer monsoon area and the green vertical dotted lines indicate latitude range (42.5°—55°N) of key area of NEA )

    图 11  AMO 年代际指数回归 1932—2010 年 53—56 候平均的 (a) 200 hPa纬向风(色阶,单位:m/s)、 (b) 500 hPa和 (c) 850 hPa 水平风 (矢线,单位:m/s) 及位势高度 (色阶,单位:gpm) (粉色实线表示风速超过30 m/s的200 hPa气候平均纬向风,间隔为5 m/s;黑色矢量与点状区域表示超过95%置信度)

    Figure 11.  53—56 pentad mean (a) 200 hPa zonal wind (shading,unit:m/s),(b) 500 hPa and (c) 850 hPa horizontal wind (vector,unit:m/s) and geopotential height (shading,unit:gpm) regressed on AMO interdecadal index from 1932 to 2010 (the pink solid lines represent the climatic mean of 200 hPa zonal wind with wind speed exceeding 30 m/s with an interval of 5 m/s;black vectors and the white dots indicate values exceeding the 95% confidence level)

    图 12  同图2,但为1932—2010年9月AMO年代际指数的回归

    Figure 12.  Same as Fig. 2 but for the results regressed on the September AMO interdecadal index from 1932 to 2010

    图 13  垂直-经向剖面的110°—140°E区域纬向平均的9月位势高度异常 (色阶,单位:gpm)(灰色垂直虚线表示中国南海区域纬度范围10°—20°N,绿色垂直虚线为东北亚关键区纬度范围42.5°—55°N)

    Figure 13.  Vertical-horizontal cross section averaged along 110°—140°E of geopotential height anomalies (shading,unit:gpm) in September (the gray vertical dotted lines indicate latitude range 10°—20°N of South China Sea area and the green vertical dotted lines indicate latitude range 42.5°—55°N of key area of NEA)

    图 14  AMO对南海夏季风撤退年代际变率影响机制示意 (红色阴影区表示暖海温区,绿色阴影区表示降水增加;黑色实线/虚线圈表示低空反气旋/气旋性环流异常 (红色A/蓝色C),红色实线/蓝色虚线圈表示300 hPa位势高度正/负异常 (红色H/蓝色L);绿色箭头表示遥相关波列的传播,蓝色箭头表示异常上升运动,黄色箭头表示异常下沉运动,灰色箭头表示高空和低空辐散风经向分量异常)

    Figure 14.  Schematic diagram of the AMO influence on the interdecadal variability of SCSSMW (the red shaded area denotes the warm SSTA,while the green shaded area indicates increased precipitation; the solid/dashed black circle denotes the low-level anticyclone/cyclone anomaly (red A/blue C),while the solid red/dashed blue circle indicates the positive/negative geopotential height anomaly (red H/blue L) at 300 hPa; the solid green arrow denotes the propagation of the teleconnection wave train, the solid blue arrow indicates the upward motion anomaly,while the solid yellow arrow indicates the downward motion anomaly, the solid gray arrows indicate the high-level and low-level meridional component anomalies of divergence wind)

  • 陈文, 胡鹏, 皇甫静亮. 2022. 南海夏季风爆发和撤退的多时间尺度变化及其机制研究进展. 中国科学: 地球科学, 52(6): 992-1009.

    Chen W, Hu P, Huangfu J L. 2022. Multi-scale climate variations and mechanisms of the onset and withdrawal of the South China Sea summer monsoon. Sci China Earth Sci, 65(6): 1030-1046
    陈艳,丁一汇,肖子牛等. 2006. 水汽输送对云南夏季风爆发及初夏降水异常的影响. 大气科学,30(1):25-37 doi: 10.3878/j.issn.1006-9895.2006.01.03

    Chen Y,Ding Y H,Xiao Z N,et al. 2006. The impact of water vapor transport on the summer monsoon onset and abnormal rainfall over Yunnan province in May. Chinese J Atmos Sci,30(1):25-37 (in Chinese) doi: 10.3878/j.issn.1006-9895.2006.01.03
    丁一汇,李崇银,何金海等. 2004. 南海季风试验与东亚夏季风. 气象学报,62(5):561-586 doi: 10.3321/j.issn:0577-6619.2004.05.005

    Ding Y H,Li C Y,He J H,et al. 2004. South China Sea Monsoon experiment (SCSMEX) and the East-Asian monsoon. Acta Meteor Sinica,62(5):561-586 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.05.005
    丁一汇,柳艳菊,梁苏洁等. 2014. 东亚冬季风的年代际变化及其与全球气候变化的可能联系. 气象学报,72(5):835-852 doi: 10.11676/qxxb2014.079

    Ding Y H,Liu Y J,Liang S J,et al. 2014. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. Acta Meteor Sinica,72(5):835-852 (in Chinese) doi: 10.11676/qxxb2014.079
    丁一汇,李怡,王遵娅等. 2020. 亚非夏季风的年代际变化:大西洋多年代际振荡与太平洋年代际振荡的协同作用. 大气科学学报,43(1):20-32 doi: 10.13878/j.cnki.dqkxxb.20191011007

    Ding Y H,Li Y,Wang Z Y,et al. 2020. Interdecadal variation of Afro-Asian summer monsoon:Coordinated effects of AMO and PDO oceanic modes. Trans Atmos Sci,43(1):20-32 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20191011007
    冯瑞权,王安宇,梁建茵等. 2007. 南海夏季风撤退期的气候特征Ⅰ:40年平均. 热带气象学报,23(1):7-13 doi: 10.3969/j.issn.1004-4965.2007.01.002

    Feng D Q,Wang A Y,Liang J Y,et al. 2007. Climatic characteristics of the retreat of South China sea summer monsoon Ⅰ:40-year means. J Trop Meteor,23(1):7-13 (in Chinese) doi: 10.3969/j.issn.1004-4965.2007.01.002
    何金海,徐海明,周兵等. 2000. 关于南海夏季风建立的大尺度特征及其机制的讨论. 气候与环境研究,5(4):333-344 doi: 10.3878/j.issn.1006-9585.2000.04.01

    He J H,Xu H M,Zhou B,et al. 2000. Large scale features of SCS summer monsoon onset and its possible mechanism. Climatic Environ Res,5(4):333-344 (in Chinese) doi: 10.3878/j.issn.1006-9585.2000.04.01
    简茂球,张春花. 2013. 准双周振荡对2010年10月海南持续性暴雨的影响. 热带气象学报,29(3):364-373 doi: 10.3969/j.issn.1004-4965.2013.03.002

    Jian M Q,Zhang C H. 2013. Impact of quasi-biweekly oscillation on a sustained rainstorm in October 2010 in Hainan. J Trop Meteor,29(3):364-373 (in Chinese) doi: 10.3969/j.issn.1004-4965.2013.03.002
    姜大膀,司东,郎咸梅. 2020. 大样本初始化十年际预测试验(CESM-DPLE)对东亚夏季气候预测的评估. 气象学报,78(3):379-390 doi: 10.11676/qxxb2020.033

    Jiang D B,Si D,Lang X M. 2020. Evaluation of summer climate prediction over East Asia by Large Ensemble CESM Initialized Decadal Prediction (CESM-DPLE) project. Acta Meteor Sinica,78(3):379-390 (in Chinese) doi: 10.11676/qxxb2020.033
    李崇银,张利平. 1999. 南海夏季风活动及其影响. 大气科学,23(3):257-266 doi: 10.3878/j.issn.1006-9895.1999.03.01

    Li C Y,Zhang L P. 1999. Summer monsoon activities in the South China Sea and its impacts. Chinese J Atmos Sci,23(3):257-266 (in Chinese) doi: 10.3878/j.issn.1006-9895.1999.03.01
    李崇银,屈昕. 2000. 伴随南海夏季风爆发的大尺度大气环流演变. 大气科学,24(1):1-14 doi: 10.3878/j.issn.1006-9895.2000.01.01

    Li C Y,Qu X. 2000. Large scale atmospheric circulation evolutions associated with summer monsoon onset in the South China Sea. Chinese J Atmos Sci,24(1):1-14 (in Chinese) doi: 10.3878/j.issn.1006-9895.2000.01.01
    李崇银,王作台,林士哲等. 2004. 东亚夏季风活动与东亚高空西风急流位置北跳关系的研究. 大气科学,28(5):641-658 doi: 10.3878/j.issn.1006-9895.2004.05.01

    Li C Y,Wang Z T,Lin S Z,et al. 2004. The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location. Chinese J Atmos Sci,28(5):641-658 (in Chinese) doi: 10.3878/j.issn.1006-9895.2004.05.01
    柳艳菊,丁一汇. 2007. 亚洲夏季风爆发的基本气候特征分析. 气象学报,65(4):511-526 doi: 10.3321/j.issn:0577-6619.2007.04.005

    Liu Y J,Ding Y H. 2007. Analysis of the basic features of the onset of Asian summer monsoon. Acta Meteor Sinica,65(4):511-526 (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.04.005
    牛宁,李建平. 2007. 2004年中国长江以南地区严重秋旱特征及其同期大气环流异常. 大气科学,31(2):254-264 doi: 10.3878/j.issn.1006-9895.2007.02.07

    Niu N,Li J P. 2007. The features of the heavy drought occurring to the South of the Yangtze River in China as well as the anomalies of atmospheric circulation in Autumn 2004. Chinese J Atmos Sci,31(2):254-264 (in Chinese) doi: 10.3878/j.issn.1006-9895.2007.02.07
    孙雪倩,李双林,孙即霖等. 2018. 北大西洋多年代际振荡正、负位相期间欧亚夏季副热带波列季节内活动特征及与印度降水的联系. 大气科学,42(5):1067-1080

    Sun X Q,Li S L,Sun J L,et al. 2018. Differences in intraseasonal activity of Eurasian subtropical zonal wave train and associated Indian summer rainfall in two opposite AMO phases. Chinese J Atmos Sci,42(5):1067-1080 (in Chinese)
    陶诗言,卫捷,梁丰等. 2010. Rossby波的下游效应引发我国高影响天气的分析. 气象,36(7):81-93 doi: 10.7519/j.issn.1000-0526.2010.07.015

    Tao S Y,Wei J,Liang F,et al. 2010. Analysis of high impact weather induced by the downstream effect of Rossby waves. Meteor Mon,36(7):81-93 (in Chinese) doi: 10.7519/j.issn.1000-0526.2010.07.015
    王安宇,梁建茵,冯瑞权等. 2010. 南海夏季风撤退的气候特征Ⅱ:年代际变化. 热带气象学报,26(3):325-329 doi: 10.3969/j.issn.1004-4965.2010.03.009

    Wang A Y,Liang J Y,Fong S K,et al. 2010. Climatological characteristics of the retreat period of South China Sea summer monsoon Ⅱ:Interdecadal variation. J Trop Meteor,26(3):325-329 (in Chinese) doi: 10.3969/j.issn.1004-4965.2010.03.009
    王晓青,刘健,王志远等. 2020. 过去1500年典型暖期东亚夏季风年代际变化特征对比及其可能成因. 气象学报,78(2):237-249

    Wang X Q,Liu J,Wang Z Y,et al. 2020. Comparison of the EASM interdecadal variability and possible causes between typical warm periods during the past 1500 years. Acta Meteor Sinica,78(2):237-249 (in Chinese)
    魏凤英. 2007. 现代气候统计诊断与预测技术. 2版. 北京:气象出版社,23-60

    Wei F Y. 2007. Modern Climate Statistical Diagnosis and Prediction Technology. 2nd ed. Beijing:China Meteorological Press,23-60 (in Chinese)
    朱抱真,丁一汇,罗会邦. 1990. 关于东亚大气环流和季风的研究. 气象学报,48(1):4-16 doi: 10.11676/qxxb1990.002

    Zhu B Z,Ding Y H,Luo H B. 1990. A review of the atmospheric general circulation and monsoon in East Asia. Acta Meteor Sinica,48(1):4-16 (in Chinese) doi: 10.11676/qxxb1990.002
    Brill K F,Uccellini L W,Burkhart R P,et al. 1985. Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upper-level jet. J Atmos Sci,42(12):1306-1320 doi: 10.1175/1520-0469(1985)042<1306:NSOATI>2.0.CO;2
    Chang C P,Chen G T J. 1995. Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon Wea Rev,123(11):3254-3267 doi: 10.1175/1520-0493(1995)123<3254:TCAWSM>2.0.CO;2
    Chang E K M,Yu D B. 1999. Characteristics of wave packets in the upper troposphere. Part Ⅰ:Northern hemisphere winter. J Atmos Sci,56(11):1708-1728 doi: 10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2
    Chang E K M. 1999. Characteristics of wave packets in the upper troposphere. Part Ⅱ:Seasonal and hemispheric variations. J Atmos Sci,56(11):1729-1747 doi: 10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2
    Chang Y,Wang J,Zhu Z W,et al. 2020. A salient oceanic driver for the interannual variability of wintertime haze days over the Pearl River Delta region,China. Theor Appl Climatol,140(1):739-750
    Chen W,Hong X W,Lu R Y,et al. 2016. Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies. Adv Atmos Sci,33(1):1-9 doi: 10.1007/s00376-015-5056-0
    Compo G P,Whitaker J S,Sardeshmukh P D,et al. 2011. The twentieth century reanalysis project. Quart J Roy Meteor Soc,137(654):1-28 doi: 10.1002/qj.776
    Ding Y H,Sikka D R. 2006. Synoptic systems and weather∥Wang B. The Asian Monsoon. Berlin Heidelberg:Springer,131-201
    Ding Y H,Wang Z Y,Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part Ⅰ:Observed evidences. Int J Climatol,28(9):1139-1161 doi: 10.1002/joc.1615
    Ding Y H,Sun Y,Wang Z Y,et al. 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part Ⅱ:Possible causes. Int J Climatol,29(13):1926-1944 doi: 10.1002/joc.1759
    Ding Y H,Liu Y J,Song Y F,et al. 2015. From MONEX to the global monsoon:A review of monsoon system research. Adv Atmos Sci,32(1):10-31 doi: 10.1007/s00376-014-0008-7
    Ding Y H,Liang P,Liu Y J,et al. 2020. Multiscale variability of Meiyu and its prediction:A new review. J Geophys Res:Atmos,125(7):e2019JD031496
    Dong B W,Sutton R T,Scaife A A. 2006. Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett,33(8):L08705
    Duchon C E. 1979. Lanczos filtering in one and two dimensions. J Appl Meteor,18(8):1016-1022 doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    Enfield D B,Mestas-Nuñez A M,Trimble P J. 2001. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U. S. Geophys Res Lett,28(10):2077-2080 doi: 10.1029/2000GL012745
    Fan Y,Fan K,Xu Z Q,et al. 2018. ENSO-South China Sea summer monsoon interaction modulated by the Atlantic Multidecadal Oscillation. J Climate,31(8):3061-3076
    Feng X,Wu R G,Chen J P,et al. 2013. Factors for interannual variations of September-October rainfall in Hainan,China. J Climate,26(12):8962-8978
    Ghosh R,Müeller W A,Baehr J,et al. 2017. Impact of observed North Atlantic multidecadal variations to European summer climate:A linear baroclinic response to surface heating. Climate Dyn,48(11-12):3547-3563 doi: 10.1007/s00382-016-3283-4
    Held I M,Suarez M J. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Amer Meteor Soc,75(10):1825-1830 doi: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2
    Hong X W,Lu R Y. 2016. The meridional displacement of the summer Asian jet,Silk Road Pattern,and tropical SST anomalies. J Climate,29(10):3753-3766 doi: 10.1175/JCLI-D-15-0541.1
    Hoskins B J,Ambrizzi T. 1993. Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci,50(12):1661-1671 doi: 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2
    Hu P,Chen W,Chen S F. 2019a. Interdecadal change in the South China Sea summer monsoon withdrawal around the mid-2000s. Climate Dyn,52(9/10):6053-6064 doi: 10.1007/s00382-018-4494-7
    Hu P,Chen W,Chen S F,et al. 2019b. Interannual variability and triggers of the South China Sea summer monsoon withdrawal. Climate Dyn,53(7-8):4355-4372 doi: 10.1007/s00382-019-04790-5
    Hu P,Chen W,Huang R P,et al. 2019c. Climatological characteristics of the synoptic changes accompanying South China Sea summer monsoon withdrawal. Int J Climatol,39(2):596-612 doi: 10.1002/joc.5828
    Hu P,Chen W,Chen S F,et al. 2020a. Impact of the September Silk Road Pattern on the South China Sea summer monsoon withdrawal. Int J Climatol,40(15):6361-6368 doi: 10.1002/joc.6585
    Hu P,Chen W,Chen S F,et al. 2020b. Relationship between the South China Sea summer monsoon withdrawal and September-October rainfall over southern China. Climate Dyn,54(1/2):713-726 doi: 10.1007/s00382-019-05026-2
    Hu P,Huangfu J L,Chen W,et al. 2020c. Impacts of early/late South China Sea summer monsoon withdrawal on tropical cyclone genesis over the western North Pacific. Climate Dyn,55(5/6):1507-1520 doi: 10.1007/s00382-020-05339-7
    Hu P,Chen W,Chen S F,et al. 2020d. Statistical analysis of the impacts of intra-seasonal oscillations on the South China Sea summer monsoon withdrawal. Int J Climatol,40(3):1919-1927 doi: 10.1002/joc.6284
    Huang B Y,Thorne P W,Banzon V F,et al. 2017. Extended reconstructed sea surface temperature,Version 5 (ERSSTv5):Upgrades,validations,and intercomparisons. J Climate,30(20):8179-8205 doi: 10.1175/JCLI-D-16-0836.1
    Jiang X A,Li T M. 2005. Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J Climate,18(18):3777-3795 doi: 10.1175/JCLI3516.1
    Lau K M,Kim K M,Yang S. 2000. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J Climate,13(14):2461-2482 doi: 10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2
    Li D L,Jiang Y C,Zhang L P,et al. 2016. Onset and retreat dates of the South China Sea summer monsoon and their relationships with the monsoon intensity in the context of climate warming. J Trop Meteor,22(3):362-373
    Li H X,He S P,Gao Y Q,et al. 2020. North Atlantic modulation of interdecadal variations in hot drought events over northeastern China. J Climate,33(10):4315-4332 doi: 10.1175/JCLI-D-19-0440.1
    Li J P,Zhang L. 2009. Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn,32(7/8):935-968 doi: 10.1007/s00382-008-0465-8
    Li Y,Li J P,Feng J. 2012. A teleconnection between the reduction of rainfall in Southwest Western Australia and North China. J Climate,25(24):8444-8461 doi: 10.1175/JCLI-D-11-00613.1
    Liu T,Li J P,Li Y J,et al. 2018. Influence of the May Southern annular mode on the South China Sea summer monsoon. Climate Dyn,51(11/12):4095-4107 doi: 10.1007/s00382-017-3753-3
    Liu Y J,Ding Y H,Song Y F. 2011. Relationship between the Meiyu over the Yangtze-Huaihe River Basins and the frequencies of tropical cyclone genesis in the Western North Pacific. J Meteor Soc Japan,89A:141-152 doi: 10.2151/jmsj.2011-A09
    Lu R Y,Dong B W,Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett,33(24):L24701 doi: 10.1029/2006GL027655
    Lu R Y, Chen W, Dong B W. 2008. How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO-south Asian summer monsoon interaction?. Geophys Res Lett, 35(8): L08706
    Luo M,Lin L J. 2017. Objective determination of the onset and withdrawal of the South China Sea summer monsoon. Atmos Sci Lett,18(6):276-282 doi: 10.1002/asl.753
    Niu N,Li J P. 2008. Interannual variability of autumn precipitation over South China and its relation to atmospheric circulation and SST anomalies. Adv Atmos Sci,25(1):117-125 doi: 10.1007/s00376-008-0117-2
    Pyper B J,Peterman R M. 1998. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can J Fish Aquat Sci,55(9):2127-2140 doi: 10.1139/f98-104
    Sardeshmukh P D,Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci,45(7):1228-1251 doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
    Schlesinger M E,Ramankutty N. 1994. An oscillation in the global climate system of period 65-70 years. Nature,367(6465):723-726 doi: 10.1038/367723a0
    Slivinski L C,Compo G P,Whitaker J S,et al. 2019. Towards a more reliable historical reanalysis:Improvements for version 3 of the Twentieth Century Reanalysis system. Quart J Roy Meteor Soc,145(724):2876-2908 doi: 10.1002/qj.3598
    Sun C,Kucharski F,Li J P,et al. 2017. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Commun,8:15998 doi: 10.1038/ncomms15998
    Sun X T,Ding Y H,Li Q Q. 2021. Interdecadal variation of the atmospheric heat source over the Tibetan Plateau and surrounding Asian monsoon region:Impact on the northern hemisphere summer circulation. J Meteorol Res,35(2):238-257 doi: 10.1007/s13351-021-0101-7
    Sutton R T,Hodson D L R. 2005. Atlantic Ocean forcing of North American and European summer climate. Science,309(5731):115-118 doi: 10.1126/science.1109496
    Takaya K,Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci,58(6):608-627 doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    Wang B,Wu R G. 1997. Peculiar temporal structure of the South China Sea summer monsoon. Adv Atmos Sci,14(2):177-194 doi: 10.1007/s00376-997-0018-9
    Wang B,LinHo. 2002. Rainy season of the Asian-Pacific summer monsoon. J Climate,15(4):386-398 doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
    Wang B,Huang F,Wu Z W,et al. 2009. Multi-scale climate variability of the South China Sea monsoon:A review. Dyn Atmos Oceans,47(1-3):15-37 doi: 10.1016/j.dynatmoce.2008.09.004
    Wang H J,Sun J H,Zhao S X,et al. 2016. The multiscale factors favorable for a persistent heavy rain event over Hainan island in October 2010. J Meteorol Res,30(4):496-512 doi: 10.1007/s13351-016-6005-2
    Wang J,He J H,Liu X F,et al. 2009. Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal. Chinese Sci Bull,54(4):687-695 doi: 10.1007/s11434-008-0534-8
    Wang J,Zhu Z W,Qi L,et al. 2019. Two pathways of how remote SST anomalies drive the interannual variability of autumnal haze days in the Beijing-Tianjin-Hebei region,China. Atmos Chem Phys,19(3):1521-1535 doi: 10.5194/acp-19-1521-2019
    Wang J,Liu Y J,Ding Y H,et al. 2021. Towards influence of Arabian Sea SST anomalies on the withdrawal date of Meiyu over the Yangtze-Huaihe River basin. Atmos Res,249:105340 doi: 10.1016/j.atmosres.2020.105340
    Webster P J,Hoyos C. 2004. Prediction of monsoon rainfall and river discharge on 15-30-day time scales. Bull Amer Meteor Soc,85(11):1745-1766 doi: 10.1175/BAMS-85-11-1745
    Xie M M,Wang C Z. 2020. Decadal variability of the anticyclone in the western North Pacific. J Climate,33(20):9031-9043 doi: 10.1175/JCLI-D-20-0008.1
    Xue F,Zeng Q C,Huang R H,et al. 2015. Recent advances in monsoon studies in China. Adv Atmos Sci,32(2):206-229 doi: 10.1007/s00376-014-0015-8
    Yanai M,Li C F,Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteor Soc Japan,70(1B):319-351 doi: 10.2151/jmsj1965.70.1B_319
    Zhou B T,Wang Z Y,Sun B,et al. 2021. Decadal change of heavy snowfall over Northern China in the mid-1990s and associated background circulations. J Climate,34(2):825-837 doi: 10.1175/JCLI-D-19-0815.1
    Zhou W,Chan J C L. 2007. ENSO and the South China Sea summer monsoon onset. Int J Climatol,27(2):157-167 doi: 10.1002/joc.1380
  • 加载中
图(14)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  37
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 录用日期:  2022-08-08
  • 修回日期:  2022-05-04
  • 网络出版日期:  2022-05-09

目录

    /

    返回文章
    返回