YANG Xuan DAI Kan ZHU Yuejian
-
摘要:
我国智能网格天气预报已初步建立0~30天涵盖基本气象要素的无缝隙气象预报业务体系。近年深度学习技术兴起,给不同领域带来前所未有的变革。[目的]同样,深度学习的非线性映射能力、海量信息提取能力、时空建模能力等优势为进一步提升智能网格预报的准确性和精细化水平提供了新的思路和方法。[结果]越来越多的研究将深度学习技术应用于智能网格预报的各个方面,包括数值预报订正和解释应用、集合天气预报、相似集合、统计降尺度、纯数据驱动的预报模型和极端天气预报等,并展示出良好的应用潜力。然而,目前深度学习技术在天气预报领域的应用仍处于起步阶段,将其引入智能网格预报业务体系还面临诸多挑战,主要包括算法的选择、算法的数据基础、多源数据融合以及模型的可解释性、可信度、可用性和工程化等。通过回顾近年来深度学习技术在智能网格预报中的应用进展和前景,同时对面临的挑战与应对进行探讨,将有利于促进深度学习技术在天气客观预报领域更好、更稳定的发展。
-

计量
- 文章访问数: 30
- HTML全文浏览量: 1
- PDF下载量: 12
- 被引次数: 0