留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中亚费尔干纳盆地灌溉气候效应的数值模拟研究

张学珍 刘欣睿 严建武 丁娜娜

张学珍,刘欣睿,严建武,丁娜娜. 2022. 中亚费尔干纳盆地灌溉气候效应的数值模拟研究. 气象学报,80(5):1-16 doi: 10.11676/qxxb2022.056
引用本文: 张学珍,刘欣睿,严建武,丁娜娜. 2022. 中亚费尔干纳盆地灌溉气候效应的数值模拟研究. 气象学报,80(5):1-16 doi: 10.11676/qxxb2022.056
Zhang Xuezhen, Liu Xinrui, Yan Jianwu, Ding Nana. 2022. A numerical study for climatic effects of irrigation in the Fergana basin,Central Asia. Acta Meteorologica Sinica, 80(5):1-16 doi: 10.11676/qxxb2022.056
Citation: Zhang Xuezhen, Liu Xinrui, Yan Jianwu, Ding Nana. 2022. A numerical study for climatic effects of irrigation in the Fergana basin,Central Asia. Acta Meteorologica Sinica, 80(5):1-16 doi: 10.11676/qxxb2022.056

中亚费尔干纳盆地灌溉气候效应的数值模拟研究

doi: 10.11676/qxxb2022.056
基金项目: 中国科学院战略性先导科技专项(XDA20020202)、国家重点研发计划(2016YFA0600401)
详细信息
    通讯作者:

    张学珍,主要从事区域气候模拟研究。E-mail:xzzhang@igsnrr.ac.cn

  • 中图分类号: P461+.8

A numerical study for climatic effects of irrigation in the Fergana basin,Central Asia

  • 摘要: 中亚地处干旱气候区,农业生产高度依赖灌溉,然而灌溉对当地气候影响的认识还较为薄弱。为此,针对多雨(2009年)、少雨(2008年)及正常(2007年)年景下中亚典型农业区—费尔干纳盆地暖季(5—9月)的气候,利用嵌入灌溉过程参数化方案并更新土壤参数的WRF模式,分别进行了考虑灌溉过程(称为IRRG试验)与不考虑灌溉过程(称为NATU试验)的模拟试验,并通过对比IRRG与NATU试验之差揭示了灌溉对区域气候的影响。研究发现:(1)灌溉致使暖季地面潜热增加(79.2 W/m2)、感热减少(−61.3 W/m2),日均温降低1.7℃,空气比湿增加2 g/kg(约为NATU的36%),因5—6月为雨季,7—8月为旱季,故7—8月的灌溉量大,冷湿效应略强于5—6月;(2)冷湿效应主要出现在灌溉区域,降温达2℃,增湿达2.4 g/kg,灌区外甚微,同时从地面到高层大气,冷湿效应越来越弱,在约500 hPa(距地面约4000 m)以上冷湿效应消失;(3)在盆地中央平原地区,因灌溉而致空气湿度增加产生的潜在增雨效应与地面冷却产生的对流抑制作用相互抵消,灌溉与无灌溉情景下当地降水无显著差异;灌溉可导致盆地南、北两侧山区降水增加(约0.6 mm/d);(4)不同年景之间灌溉量差异主要出现在5—6月,少雨年比多雨年灌溉量偏多20 mm/月,日均温降幅偏大0.3℃,空气比湿增幅偏大0.5 g/kg,但山区降水增幅偏小0.6 mm/d。

     

  • 图 1  模拟区域范围与地形 (色阶,海拔高度)、研究区地理位置 (红色多边形) 及气象站分布 (红色空心圈,蓝色数字表示NOAA气候数据集中气象站的编号)

    Figure 1.  Model domain and topography (shaded,altitude),geographical location of the Fergana Basin (red polygon) and meteorology stations (red circles,blue numbers denote station IDs in the NOAA climate dataset)

    图 2  研究区IRRG试验550个农田网格 (a) 平均的逐月灌溉量与 (b) 多雨、少雨、正常3类年景平均的生长季 (5—9月) 灌溉量空间分布

    Figure 2.  Average monthly irrigation amount of IRRG simulation over 550 cropland grids in the study area (a) and spatial distribution of averaged monthly irrigation amount in the growth season (May to September) for years of above normal rainfall,below normal rainfall and normal rainfall (b)

    图 3  2007年5—9月灌区地表辐射平衡与能量收支 (a. 地表接收短波辐射,b. 地表反射短波辐射,c. 地表净吸收短波辐射,d. 地表净吸收长波辐射,e. 地表净辐射,f. 感热通量,g. 潜热通量,h. 土壤热通量)

    Figure 3.  Surface radiation balance and energy budget over irrigation area from May to September in 2007 (a. shortwave radiation reaching the surface,b. shortwave radiation reflected by the surface,c.net shortwave radiation absorbed by the surface,d.net longwave radiation absorbed by the surface,e. net surface radiation,f. sensible heat flux,g. latent heat flux,h. ground heat flux)

    图 4  IRRG与NATU模拟的2007年5—9月感热通量 (a) 与潜热通量 (b) 之差 (黑点表示置信水平为95%)

    Figure 4.  Differences between IRRG and NATU simulations in sensible heat flux (a) and latent heat flux (b) from May to September in 2007 (the black dots denote the 95% confidence level)

    图 5  IRRG与NATU模拟的3类年景平均5—9月 (a、b) 及5—6月 (c、d) 比湿 (a、c) 与地表气温 (b、d ) 之差 (黑点表示置信水平为95%)

    Figure 5.  Differences between IRRG and NATU simulations in specific humidity (a,c) and surface air temperature (b,d) from May to September (a,b) and from May to June (c,d) for the three years of different rainfall anomalies (black dots denote the 95% confidence level)

    图 6  IRRG与NATU模拟的少雨年 (a、b) 及多雨年 (c、d) 5—6月比湿 (a、c) 与地表气温 (b、d) 之差 (黑点表示置信水平为95%)

    Figure 6.  Same with Fig. 5 but for May to June in the years of below normal rainfall (a,b) and above normal rainfall (c,d)(the black dots denote the 95% confidence level)

    Continued

    图 7  正常 (a1、b1)、少雨 (a2、b2)、多雨 (a3、b3) 年景下气象站 (a1—a3. 38611站,b1—b3. 38618站) 观测 (OBS) 与模拟的地表气温

    Figure 7.  Observed and simulated surface air temperature at two meteorological stations (a1—a3. Site ID 38611,b1—b3. Site ID 38618) for the normal rainfall year (a1,b1),below normal rainfall year (a2,b2) and above normal rainfall year (a3,b3

    Continued

    图 8  IRRG与NATU模拟的3类年景平均5—9月 (a、b) 及5—6月 (c、d) 比湿 (a、c) 与大气温度 (b、d) 之差的垂直剖面 (黑点表示置信水平为95%)

    Figure 8.  Mean vertical profiles of differences between IRRG and NATU simulations in specific humidity (a,c) and air temperature (b,d) from May to September (a,b) and from May to June (c,d) for the three years of different rainfall anomalies (the black dots denote the 95% confidence level)

    Continued

    图 9  少雨年 (a、b) 及多雨年 (c、d) IRRG与NATU模拟的5—6月比湿 (a、c) 与大气温度 (b、d) 之差的垂直剖面 (黑点表示置信水平为95%)

    Figure 9.  Same as Fig. 8 but for May to June in below normal rainfall year (a,b) and above normal rainfall year (c,d)(the black dots denote the 95% confidence level)

    图 10  NATU模拟的3类年景平均5—9月 (a、b) 与5—6月 (c、d) 降水量 (a、c) 及IRRG与NATU模拟的降水量之差 (b、d)(黑点表示置信水平为95%,红框表示降水增加典型区域)

    Figure 10.  Mean NATU simulated precipitation (a,c) and differences between IRRG and NATU simulations in precipitation (b,d) from May to September (a,b) and from May to June (c,d) in the three years of different rainfall anomalies (the black dots denote the 95% confidence level,red polygons denote typical areas where precipitation increases)

    图 11  NATU模拟的少雨年 (a、b) 与多雨年 (c、d) 5—6月降水量 (a、c) 及IRRG与NATU模拟的降水量之差 (b、d)(黑点表示置信水平为95%,红框表示降水增加典型区域)

    Figure 11.  Same as Fig. 10 but for precipitation from May to June under below normal rainfall year (a,b)and above normal rainfall year (c,d)(the black dots denote the 95% confidence level,red polygons denote typical areas where precipitation increases)

    图 12  NATU模拟的少雨年 (a、b) 与多雨年 (c、d) 5—6月水汽通量 (a、c) 及IRRG与NATU模拟的整层水汽通量之差 (b、d)(红框表示降水增加典型区域,箭头表示水汽输送方向)

    Figure 12.  Mean NATU simulated column-integrated water vapor flux (left panel) and the differences between IRRG and NATU (right panel) for May to June under below normal rainfall years (top panel) and under above normal rainfall years (bottom panel)(red polygons indicate typical areas where precipitation increases,arrows denote direction of water vapor transportation)

  • [1] 丁娜娜,胡召玲,张学珍. 2021. 农田灌溉过程与土壤参数更新对中亚费尔干纳盆地WRF/Noah模拟精度的提升. 气候与环境研究,26(2):202-216

    Ding N N,Hu Z L,Zhang X Z. 2021. Improvement of WRF/Noah simulations for the Fergana basin in Central Asia based on irrigation schemes and soil data update. Climatic Environ Res,26(2):202-216 (in Chinese)
    [2] 宋日权,褚贵新,冶军等. 2010. 掺砂对土壤水分入渗和蒸发影响的室内试验. 农业工程学报,26(S1):109-114

    Song R Q,Chu G X,Ye J,et al. 2010. Effects of surface soil mixed with sand on water infiltration and evaporation in laboratory. Trans Chin Soc Agric Eng,26(S1):109-114 (in Chinese)
    [3] 王江丽,赖先齐,帕尼古丽·阿汗别克等. 2013. 中亚与新疆绿洲农业的比较. 干旱区研究,30(1):182-187

    Wang J L,Lai X Q,Ahanbyk P,et al. 2013. Comparison oasis agriculture in Central Asia and Xinjiang. Arid Zone Res,30(1):182-187 (in Chinese)
    [4] 张建国,金斌斌. 2010. 土壤与农作. 郑州:黄河水利出版社. 141pp. Zhang J G,Jin B B. 2010. Soil and Farming. Zhengzhou:Yellow River Water Conservancy Press,141pp.
    [5] Abu-Hamdeh N H,Reeder R C. 2000. Soil thermal conductivity effects of density,moisture,salt concentration,and organic matter. Soil Sci Soc Amer J,64(4):1285-1290 doi: 10.2136/sssaj2000.6441285x
    [6] Ambika A K,Mishra V. 2019. Observational evidence of irrigation influence on vegetation health and land surface temperature in India. Geophys Res Lett,46(22):13441-13451 doi: 10.1029/2019GL084367
    [7] Ambika A K,Mishra V. 2020. Substantial decline in atmospheric aridity due to irrigation in India. Environ Res Lett,15(12):124060 doi: 10.1088/1748-9326/abc8bc
    [8] Benton G S, Blackburn R T, Snead V O. 1950. The role of the atmosphere in the hydrologic cycle. Eos, Trans Amer Geophys Union, 31(1): 61-73
    [9] Chen F,Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I:Model implementation and sensitivity. Mon Wea Rev,129(4):569-585 doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
    [10] Collins W D,Rasch P J,Boville B A,et al. 2004. Description of the NCAR community atmosphere model (CAM 3.0). Boulder:National Center for Atmospheric Research,1326-1334
    [11] Conrad C,Rahmann M,Machwitz M,et al. 2013. Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley,Uzbekistan. Glob Planet Change,110:88-98 doi: 10.1016/j.gloplacha.2013.08.002
    [12] Cook B I,Shukla S P,Puma M J,et al. 2015. Irrigation as an historical climate forcing. Climate Dyn,44(5-6):1715-1730 doi: 10.1007/s00382-014-2204-7
    [13] De Kok R J,Tuinenburg O A,Bonekamp P N J,et al. 2018. Irrigation as a potential driver for anomalous glacier behavior in High Mountain Asia. Geophys Res Lett,45(4):2047-2054 doi: 10.1002/2017GL076158
    [14] Devanand A,Huang M Y,Ashfaq M,et al. 2019. Choice of irrigation water management practice affects Indian summer monsoon rainfall and its extremes. Geophys Res Lett,46(15):9126-9135 doi: 10.1029/2019GL083875
    [15] De Vrese P,Hagemann S,Claussen M. 2016. Asian irrigation,African rain:Remote impacts of irrigation. Geophys Res Lett,43(8):3737-3745 doi: 10.1002/2016GL068146
    [16] Harding K J,Snyder P K. 2012. Modeling the atmospheric response to irrigation in the Great Plains. Part I:General impacts on precipitation and the energy budget. J Hydrometeorol,13(6):1667-1686 doi: 10.1175/JHM-D-11-098.1
    [17] Hong S Y,Pan H L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev,124(10):2322-2339 doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
    [18] Hong S Y,Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac J Atmos Sci,42(2):129-151
    [19] Huber D B,Mechem D B,Brunsell N A. 2014. The effects of great plains irrigation on the surface energy balance,regional circulation,and precipitation. Climate,2(2):103-128 doi: 10.3390/cli2020103
    [20] Kang S,Eltahir E A B. 2019. Impact of irrigation on regional climate over Eastern China. Geophys Res Lett,46(10):5499-5505 doi: 10.1029/2019GL082396
    [21] Keune J,Sulis M,Kollet S,et al. 2018. Human water use impacts on the strength of the continental sink for atmospheric water. Geophys Res Lett,45(9):4068-4076 doi: 10.1029/2018GL077621
    [22] Koster R D,Dirmeyer P A,Guo Z C,et al. 2004. Regions of strong coupling between soil moisture and precipitation. Science,305(5687):1138-1140 doi: 10.1126/science.1100217
    [23] Li Y,Guan K Y,Peng B,et al. 2020. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob Change Biol,26(5):3065-3078 doi: 10.1111/gcb.15002
    [24] Lu Y Q,Harding K,Kueppers L. 2017. Irrigation effects on land-atmosphere coupling strength in the United States. J Climate,30(10):3671-3685 doi: 10.1175/JCLI-D-15-0706.1
    [25] Mathur R,AchutaRao K. 2020. A modelling exploration of the sensitivity of the India’s climate to irrigation. Climate Dyn,54(3):1851-1872
    [26] Mueller N D,Butler E E,McKinnon K A,et al. 2016. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat Clim Change,6(3):317-322 doi: 10.1038/nclimate2825
    [27] Nocco M A,Smail R A,Kucharik C J. 2019. Observation of irrigation-induced climate change in the Midwest United States. Glob Change Biol,25(10):3472-3484 doi: 10.1111/gcb.14725
    [28] Oh S G,Suh M S. 2019. Effects of irrigated cropland on the local and regional climate over northeast Asia in a regional climate model. Asia-Pac J Atmos Sci,55(3):351-371 doi: 10.1007/s13143-018-0092-1
    [29] Pitman A J,Arneth A,Ganzeveld L. 2012. Regionalizing global climate models. Int J Climatol,32(3):321-337 doi: 10.1002/joc.2279
    [30] Puy A,Piano S L,Saltelli A. 2020. Current models underestimate future irrigated areas. Geophys Res Lett,47(8):e2020GL087360 doi: 10.1029/2020GL087360
    [31] Sacks W J,Cook B I,Buenning N,et al. 2009. Effects of global irrigation on the near-surface climate. Climate Dyn,33(2):159-175
    [32] Segal M,Pan Z T,Turner R W,et al. 1998. On the potential impact of irrigated areas in north America on summer rainfall caused by large-scale systems. J Appl MeteorClimatol,37(3):325-331 doi: 10.1175/1520-0450-37.3.325
    [33] Siebert S,Döll P,Hoogeveen J,et al. 2005. Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci,9(5):535-547 doi: 10.5194/hess-9-535-2005
    [34] Thiery W,Davin E L,Lawrence D M,et al. 2017. Present-day irrigation mitigates heat extremes. J Geophys Res,122(3):1403-1422 doi: 10.1002/2016JD025740
    [35] Thiery W,Visser A J,Fischer E M,et al. 2020. Warming of hot extremes alleviated by expanding irrigation. Nat Commun,11(1):290 doi: 10.1038/s41467-019-14075-4
    [36] Troy T J,Kipgen C,Pal I. 2015. The impact of climate extremes and irrigation on US crop yields. Environ Res Lett,10(5):054013 doi: 10.1088/1748-9326/10/5/054013
    [37] Valmassoi A,Dudhia J,Di Sabatino S,et al. 2020. Regional climate impacts of irrigation in northern Italy using a high resolution model. Atmosphere,11(1):72 doi: 10.3390/atmos11010072
    [38] Wei J F,Dirmeyer P A,Wisser D,et al. 2013. Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. J Hydrometeorol,14(1):275-289 doi: 10.1175/JHM-D-12-079.1
    [39] Wu L Y,Feng J M,Miao W H. 2018. Simulating the impacts of irrigation and dynamic vegetation over the North China Plain on regional climate. J Geophys Res,123(15):8017-8034
    [40] Xu M,Wu H,Kang S C. 2018. Impacts of climate change on the discharge and glacier mass balance of the different glacierized watersheds in the Tianshan Mountains,Central Asia. Hydrol Process,32(1):126-145 doi: 10.1002/hyp.11409
    [41] Yang Q Q,Huang X,Tang Q H. 2020. Irrigation cooling effect on land surface temperature across China based on satellite observations. Sci Total Environ,705:135984 doi: 10.1016/j.scitotenv.2019.135984
    [42] Zhang X Z,Tang Q H,Zheng J Y,et al. 2015. Suppression of spring rain by surface greening over North China Plain. Int J Climatol,35(10):2752-2758 doi: 10.1002/joc.4169
    [43] Zhang X Z,Xiong Z,Tang Q H. 2017. Modeled effects of irrigation on surface climate in the Heihe River Basin,Northwest China. J Geophys Res,122(15):7881-7895 doi: 10.1002/2017JD026732
    [44] Zhang X Z,Chen J Z,Song S F. 2021. Divergent impacts of land use/cover change on summer precipitation in eastern China from 1980 to 2000. Int J Climatol,41(4):2360-2374 doi: 10.1002/joc.6963
    [45] Zhu X F,Liang S L,Pan Y Z. 2012. Observational evidence of the cooling effect of agricultural irrigation in Jilin,China. Climatic Change,114(3):799-811
  • 加载中
图(15)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-05-22
  • 网络出版日期:  2022-05-26

目录

    /

    返回文章
    返回