留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自动识别的近三十年华北地区冬季冷锋活动异常及其可能成因

秦育婧 冯梦茹 卢楚翰 何书雅 李丽平 胡春丽

秦育婧,冯梦茹,卢楚翰,何书雅,李丽平,胡春丽. 2022. 基于自动识别的近三十年华北地区冬季冷锋活动异常及其可能成因. 气象学报,80(5):1-11 doi: 10.11676/qxxb2022.057
引用本文: 秦育婧,冯梦茹,卢楚翰,何书雅,李丽平,胡春丽. 2022. 基于自动识别的近三十年华北地区冬季冷锋活动异常及其可能成因. 气象学报,80(5):1-11 doi: 10.11676/qxxb2022.057
Qin Yujing, Feng Mengru, Lu Chuhan, He Shuya, Li Liping, Hu Chunli. 2022. Winter cold front activities and associated circulation characteristics in North China in the recent 30 years detected by an automatic identification method. Acta Meteorologica Sinica, 80(5):1-11 doi: 10.11676/qxxb2022.057
Citation: Qin Yujing, Feng Mengru, Lu Chuhan, He Shuya, Li Liping, Hu Chunli. 2022. Winter cold front activities and associated circulation characteristics in North China in the recent 30 years detected by an automatic identification method. Acta Meteorologica Sinica, 80(5):1-11 doi: 10.11676/qxxb2022.057

基于自动识别的近三十年华北地区冬季冷锋活动异常及其可能成因

doi: 10.11676/qxxb2022.057
基金项目: 江苏省重点研发计划产业前瞻与关键核心技术项目(BE2022161)
详细信息
    作者简介:

    秦育婧,主要从事极端天气气候、大气环流异常及短时临近预报研究。E-mail:qinyujing@nuist.edu.cn

  • 中图分类号: P441

Winter cold front activities and associated circulation characteristics in North China in the recent 30 years detected by an automatic identification method

  • 摘要: 利用1989—2018年ERA5再分析资料,使用适用于欧亚大陆的冷锋两步客观识别算法,得到冬季冷锋活动数据集。在此基础上,分析了近三十年来华北地区冬季冷锋活动特征,并讨论了冷锋活动异常的可能成因。结果表明:(1)华北地区是东亚大陆上冬季冷锋频数最多、活动最强的关键区域,且华北地区冷锋活动强度有明显的年际变化;(2)在华北地区冷锋活动强年,从北大西洋到欧亚大陆上空,存在一个明显的欧亚遥相关(EU)波列正位相,华北地区上空500 hPa为负位势高度异常,表明东亚大槽增强,相应地面西伯利亚高压偏强;(3)欧亚大陆北部边缘海区域为异常暖平流时,华北地区冷空气活动增强,冷锋活动也增强;(4)大西洋北部的海面温度(SST)异常,可能通过激发对流层中、上层的罗斯贝波,然后向东传播,经过欧洲-西西伯利亚传至中国华北地区,从而影响华北地区的冷锋活动强度。

     

  • 图 1  1989—2018年冬季冷锋频率 (%) 气候态 (红框为华北地区范围 (35°—43°N,110°—120°E),色阶为地形高度:m)

    Figure 1.  The climatology of frequency (%) of cold fronts in winter in 1989—2018 (red box shows the range of North China (35°—43°N,110°—120°E),shadings,terrain height:m)

    图 2  1989—2018年华北地区冬季标准化的区域平均冷锋频率

    Figure 2.  Normalized regional average cold front frequency in winter over North China from 1989 to 2018

    图 3  华北地区冷锋活动 (a) 强、(b) 弱年的频率合成距平 (黑点表示通过显著性水平为 0.1的t检验)

    Figure 3.  Anomalies of cold front frequency in (a) strong and (b) weak years of cold front activities (Black bots represent statistically significant values at the 0.1 significance level)

    图 4  华北地区冷锋活动 (a) 强、(b) 弱年海平面气压场 (黑色等值线,单位:hPa) 及30 a平均的西伯利亚高压特征等值线 (1028 hPa,蓝线) 和华北地区冷锋 (c) 强、(d) 弱年海平面气压 (色阶,单位:hPa)、925 hPa风场 (矢量,单位:m/s) 及经向风 (等值线,单位:m/s) 的合成距平分布 (黑点表示通过显著性水平为 0.1的t检验)

    Figure 4.  Mean sea level pressure (black contour,unit:hPa) in (a) strong and (b) weak years of cold front activities and the 30-year mean Siberian High characteristic isolines (1028 hPa,blue line) in North China,anomalies of sea level pressure (shading,unit:hPa),925 hPa wind field (vector,unit:m/s) and meridional wind (contour,unit:m/s) in (c) strong and (d) weak years of cold front activities in North China (black bots represent statistically significant values at the 0.1 significance level)

    图 5  华北地区冷锋活动 (a) 强、(b) 弱年500 hPa位势高度 (色阶,单位:dagpm)、风场 (矢量,单位:m/s) 的合成距平和冷锋活动 (c) 强、(d) 弱年300 hPa纬向风 (色阶,单位:m/s) 的合成距平及300 hPa纬向风气候态 (等值线,单位:m/s)(黑点表示通过显著性水平为 0.1的t检验)

    Figure 5.  Anomalies of 500 hPa geopotential height (shaded,unit:dagpm) and wind field (vector,unit:m/s) in (a) strong and (b) weak years of cold front activities in North China,300 hPa zonal wind climatic state (contour,unit:m/s) and anomalies of 300 hPa zonal wind (shaded,unit:m/s) in (c) strong and (d) weak years of cold front activities in North China (black bots represent statistically significant values at the 0.1 significance level)

    图 6  850 hPa的温度平流 (单位:10−6 K/s)(a) 强、(b) 弱年异常 (黑点表示通过显著性水平为 0.1的t检验)

    Figure 6.  850 hPa anomalous temperature advection in (a) strong and (b) weak years of cold front activities (unit:10−6 K/s,black bots represent statistically significant values at the 0.1 significance level)

    图 7  华北地区冷锋活动 (a、d) 强、(b、e) 弱年冬季平均最低温和极端最低温的合成距平及强弱年 (c) 平均最低温和 (f) 极端最低温差值 (单位:℃,黑点表示通过显著性水平为 0.1的t检验)

    Figure 7.  Average minimum temperature and extreme minimum temperature in (a,d) strong years and (b,e) weak years of cold front activities,composite differences of (c) average minimum temperature and (f) extreme minimum temperature in winter between strong and weak years of cold front activities (unit:℃,black bots represent statistically significant values at the 0.1 significance level)

    图 8  大西洋SST异常场 (a. 强年距平,b. 弱年距平,c. 强弱年合成差值) 和20°—50°W平均气温纬度-高度剖面 (d. 强年距平,e. 弱年距平,f. 强弱年合成差值,单位:℃,黑点表示通过显著性水平为 0.1的t检验)

    Figure 8.  SST anomalies in the Atlantic Ocean in (a) strong years,(b) weak years of cold front activities and (c) composite difference between (a) and (b);height-latitude crosssections of mean temperature at 20°—50°W in (d) strong years,(e) weak years of cold front activities and (f) composite difference between (d) and (e) (unit:℃,black bots represent statistically significant values at the 0.1 significance level)

    图 9  1989—2018年华北地区冬季冷锋活动强度指数回归的 (a) 200 hPa及 (b) 500 hPa波活动通量 (箭矢,单位:m2/s2) 及散度 (色阶,单位:m/s2

    Figure 9.  Wave activity flux (unit:m2/s2) and divergence (shaded,unit:m/s2) at (a) 200 hPa and (b) 500 hPa regressed by regional average cold front frequency index in winter in North China from 1989 to 2018

  • [1] 程念亮,孟凡,徐峻等. 2013. 中国东部春季一次强冷锋活动空气污染输送过程分析. 环境科学研究,26(1):34-42

    Cheng N L,Meng F,Xu J,et al. 2013. Process analysis about the impact of a strong cold front on air pollution transportation in eastern China in spring. Res Environ Sci,26(1):34-42 (in Chinese)
    [2] 丁太胜,徐耀华,任敏. 1989. 江淮锋面暴雨中尺度降水概念模式及短时预报. 南京气象学院学报,12(4):439-446

    Ding T S,Xu Y H,Ren M. 1989. The concept model of mesoscale precipitation in frontal storm over the Jiang-Huai area and its nowcasting. J Nanjing Inst Meteor,12(4):439-446 (in Chinese)
    [3] 范俊红,易笑园. 2019. 大范围持续暴雪过程中多种影响系统的对比分析. 气象学报,77(6):965-979 doi: 10.11676/qxxb2019.045

    Fan J H,Yi X Y. 2019. Comparative analysis of several influencing systems in the process of a large-scale continuous snowstorm. Acta Meteor Sinica,77(6):965-979 (in Chinese) doi: 10.11676/qxxb2019.045
    [4] 高守亭,陶诗言. 1991. 高空急流加速与低层锋生. 大气科学,15(2):11-22 doi: 10.3878/j.issn.1006-9895.1991.02.02

    Gao S T,Tao S Y. 1991. The lower layer frontogenesis induced by the acceleration of upperjet stream. Sci Atmos Sinica,15(2):11-22 (in Chinese) doi: 10.3878/j.issn.1006-9895.1991.02.02
    [5] 顾震潮,陈雄山,许有丰. 1958. 锋面假相当位温图和它对中国寒潮冷锋上界变化分析的应用. 气象学报,29(1):44-56 doi: 10.11676/qxxb1958.006

    Gu Z C,Chen X S,Xu Y F. 1958. Frontal θse chart and its application to the analysis of upper boundary of cold-wave front in China. Acta Meteor Sinica,29(1):44-56 (in Chinese) doi: 10.11676/qxxb1958.006
    [6] 贺圣平,王会军,徐鑫萍等. 2016. 2015/2016冬季北极世纪之暖与超级厄尔尼诺对东亚气候异常的影响. 大气科学学报,39(6):735-743

    He S P,Wang H J,Xu X P,et al. 2016. Impact of Arctic warming and the super El Niño in winter 2015/2016 on the East Asian climate anomaly. Trans Atmos Sci,39(6):735-743 (in Chinese)
    [7] 侯俊,管兆勇. 2013. 华东地区6—7月锋生的气候学特征及环流结构. 气象学报,71(1):1-22 doi: 10.11676/qxxb2013.001

    Hou J,Guan Z Y. 2013. Climatic features of frontogenesis in East China and their related circulation patterns during the early summer. Acta Meteor Sinica,71(1):1-22 (in Chinese) doi: 10.11676/qxxb2013.001
    [8] 黄小刚,费建芳,孙吉明等. 2017. 2013年冬季长江中下游地区一次高架雷暴过程的成因分析. 气象学报,75(3):429-441 doi: 10.11676/qxxb2017.031

    Huang X G,Fei J F,Sun J M,et al. 2017. Analysis on the formation mechanism of an elevated thunderstorm over the middle and lower Yangtze Basin in February 2013. Acta Meteor Sinica,75(3):429-441 (in Chinese) doi: 10.11676/qxxb2017.031
    [9] 李典南,许东蓓,苟尚等. 2019. 甘肃中部一次冷锋后高架雷暴天气过程综合诊断. 干旱气象,37(5):809-816

    Li D N,Xu D B,Gou S,et al. 2019. Comprehensive analysis of an elevated thunderstorm process behind cold front in the central of Gansu province. J Arid Meteor,37(5):809-816 (in Chinese)
    [10] 李津,赵思雄,孙建华. 2017. 一次华北破纪录暴雪成因的分析研究. 气候与环境研究,22(6):683-698 doi: 10.3878/j.issn.1006-9585.2017.16121

    Li J,Zhao S X,Sun J H. 2017. Analysis of a record heavy snowfall event in North China. Climatic Environ Res,22(6):683-698 (in Chinese) doi: 10.3878/j.issn.1006-9585.2017.16121
    [11] 李勇红,张可苏. 1992. 急流加速产生的高空锋生和低空锋生. 大气科学,16(4):452-463 doi: 10.3878/j.issn.1006-9895.1992.04.08

    Li Y H,Zhang K S. 1992. Upper-level frontogenesis and lower-level frontogenesis forced by jet acceleration. Sci Atmos Sinica,16(4):452-463 (in Chinese) doi: 10.3878/j.issn.1006-9895.1992.04.08
    [12] 刘还珠,张绍晴. 1996. 湿位涡与锋面强降水天气的三维结构. 应用气象学报,7(3):275-284

    Liu H Z,Zhang S Q. 1996. Moist potential vorticity and the three dimensional structure of a cold front with heavy rainfall. J Appl Meteor Sci,7(3):275-284 (in Chinese)
    [13] 刘景涛,钱正安,姜学恭等. 2004. 中国北方特强沙尘暴的天气系统分型研究. 高原气象,23(4):540-547 doi: 10.3321/j.issn:1000-0534.2004.04.019

    Liu J T,Qian Z A,Jiang X G,et al. 2004. A study on weather types of super severe dust storms in North China. Plateau Meteor,23(4):540-547 (in Chinese) doi: 10.3321/j.issn:1000-0534.2004.04.019
    [14] 刘璐,冉令坤,周玉淑等. 2015. 北京“7.21”暴雨的不稳定性及其触发机制分析. 大气科学,39(3):583-595 doi: 10.3878/j.issn.1006-9895.1407.14144

    Liu L,Ran L K,Zhou Y S,et al. 2015. Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July 2012. Chinese J Atmos Sci,39(3):583-595 (in Chinese) doi: 10.3878/j.issn.1006-9895.1407.14144
    [15] 刘毓赟,陈文. 2012. 北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响. 大气科学,36(2):423-432 doi: 10.3878/j.issn.1006-9895.2011.11066

    Liu Y Y,Chen W. 2012. Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China. Chinese J Atmos Sci,36(2):423-432 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.11066
    [16] 吕克利. 1991. 大气层结和天气尺度位温扰动对锋生的作用. 大气科学,15(5):82-89 doi: 10.3878/j.issn.1006-9895.1991.05.10

    Lü K L. 1991. Effects of atmospheric stratification and synoptic-scale potential temperature disturbances on the frontogenesis. Sci Atmos Sinica,15(5):82-89 (in Chinese) doi: 10.3878/j.issn.1006-9895.1991.05.10
    [17] 濮梅娟,马明明,张雪蓉等. 2018. 江苏连续三次区域性浓雾形成过程的机理分析. 气象科学,38(2):139-148

    Pu M J,Ma M M,Zhang X R,et al. 2018. An analysis for three successive fogs formation mechanisms in Jiangsu. J Meteor Sci,38(2):139-148 (in Chinese)
    [18] 钱滔滔,吕克利. 1997. 大气层结对冷锋环流的影响. 气象学报,55(1):77-85 doi: 10.3321/j.issn:0577-6619.1997.01.008

    Qian T T,Lü K L. 1997. Influences of stratification on cold-frontal circulation. Acta Meteor Sinica,55(1):77-85 (in Chinese) doi: 10.3321/j.issn:0577-6619.1997.01.008
    [19] 陶诗言,朱翠娟,叶卓佳. 1982. 大尺度锋面降水的边界层结构分析. 科学通报,27(11):678-680. Tao S Y,Zhu C J,Ye Z J. 1983. An analysis of the boundary-layer structure of the macroscale frontal precipitation. Chinese Sci Bull,28(5):649-652.
    [20] 王坚红,张萌,任淑媛等. 2019. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究. 地球科学进展,34(7):717-730 doi: 10.11867/j.issn.1001-8166.2019.07.0717

    Wang J H,Zhang M,Ren S Y,et al. 2019. Simulation study on the impact of Taihang Mountain slopes on downhill front cyclone rainstorm. Adv Earth Sci,34(7):717-730 (in Chinese) doi: 10.11867/j.issn.1001-8166.2019.07.0717
    [21] 王宗敏,丁一汇,张迎新等. 2014. 副高外围对流雨带中的对流—对称不稳定及锋生的诊断分析. 大气科学,38(1):133-145 doi: 10.3878/j.issn.1006-9895.2013.12206

    Wang Z M,Ding Y H,Zhang Y X,et al. 2014. Analysis of convective-symmetric instabilities and frontogenesis in a convective rain band on the northwest edge of WPSH. Chinese J Atmos Sci,38(1):133-145 (in Chinese) doi: 10.3878/j.issn.1006-9895.2013.12206
    [22] 武炳义. 2018. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题. 大气科学,42(4):786-805

    Wu B Y. 2018. Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes. Chinese J Atmos Sci,42(4):786-805 (in Chinese)
    [23] 杨吉萍,胡兴才,崔志强. 2016. 甘肃民勤“4.24”沙尘暴过程的数值模拟分析. 干旱气象,34(4):718-724

    Yang J P,Hu X C,Cui Z Q. 2016. Numerical simulation analysis of a dust storm on 24 April 2010 in Minqin of Gansu. J Arid Meteor,34(4):718-724 (in Chinese)
    [24] 俞小鼎,周小刚,王秀明. 2012. 雷暴与强对流临近天气预报技术进展. 气象学报,70(3):311-337 doi: 10.11676/qxxb2012.030

    Yu X D,Zhou X G,Wang X M. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica,70(3):311-337 (in Chinese) doi: 10.11676/qxxb2012.030
    [25] 张晨,朱彬,刘晓慧等. 2020. 一次冷锋过程中我国区域空气污染边界层特征. 中国环境科学,40(10):4284-4291 doi: 10.3969/j.issn.1000-6923.2020.10.011

    Zhang C,Zhu B,Liu X H,et al. 2020. Boundary layer characteristics of an air pollution event in China during a cold front. China Environ Sci,40(10):4284-4291 (in Chinese) doi: 10.3969/j.issn.1000-6923.2020.10.011
    [26] 张镡. 1958. 东亚寒潮结构的个例分析. 气象学报,29(4):274-286

    Zhang C. 1958. Анализ струнтуры волны холода над восточной азией. Acta Meteor Sinica,29(4):274-286 (in Chinese)
    [27] 张芳华,陈涛,杨舒楠等. 2014. 一次冬季暴雨过程中的锋生和条件对称不稳定分析. 气象,40(9):1048-1057 doi: 10.7519/j.issn.1000-0526.2014.09.002

    Zhang F H,Chen T,Yang S N,et al. 2014. Diagnosis of the frontogenesis and CSI features during a torrential rainfall event in winter. Meteor Mon,40(9):1048-1057 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.09.002
    [28] 周玉淑,邓国,黄仪虹. 2003. 长江流域一次暴雨过程中的不稳定条件分析. 气象学报,61(3):323-333 doi: 10.3321/j.issn:0577-6619.2003.03.007

    Zhou Y S,Deng G,Huang Y H. 2003. Analysis on instability condition during a torrential rain over Yangzi River Basin. Acta Meteor Sinica,61(3):323-333 (in Chinese) doi: 10.3321/j.issn:0577-6619.2003.03.007
    [29] 朱炳海. 1950. 中国春季锋面活动. 中国科学,1(1):71-83. Zhu B H. 1950. Frontal activity in spring in China. Scientia Sinica,1(1):71-83 Berry G,Reeder M J,Jakob C. 2011. A global climatology of atmospheric fronts. Geophys Res Lett,38(4):L04809.
    [30] Catto J L,Raveh-Rubin S. 2019. Climatology and dynamics of the link between dry intrusions and cold fronts during winter. Part I:Global climatology. Climate Dyn,53(3):1873-1892
    [31] Cohen J,Screen J A,Furtado J C,et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci,7(9):627-637 doi: 10.1038/ngeo2234
    [32] Feng M R,Qin Y J,Lu C H. 2021. An objective identification method for wintertime cold fronts in Eurasia. Adv Atmos Sci,38(10):1695-1705 doi: 10.1007/s00376-021-0315-8
    [33] Gambo K,Lu L,Li W J. 1987. Numerical simulation of Eurasian teleconnection pattern in atmospheric circulation during the Northern Hemisphere winter. Adv Atmos Sci,4(4):385-394 doi: 10.1007/BF02656739
    [34] Held I M,Ting M F,Wang H L. 2002. Northern winter stationary waves:Theory and modeling. J Climate,15(16):2125-2144 doi: 10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2
    [35] Hénin R,Ramos A M,Schemm S,et al. 2019. Assigning precipitation to mid-latitudes fronts on sub-daily scales in the North Atlantic and European sector:Climatology and trends. Int J Climatol,39(1):317-330 doi: 10.1002/joc.5808
    [36] Hersbach H,Bell B,Berrisford P,et al. 2020. The ERA5 global reanalysis. Quart J Roy Meteor Soc,146(730):1999-2049 doi: 10.1002/qj.3803
    [37] Hewson T D. 1998. Objective fronts. Meteor Appl,5(1):37-65 doi: 10.1017/S1350482798000553
    [38] Kang H Q,Zhu B,Gao J H,et al. 2019. Potential impacts of cold frontal passage on air quality over the Yangtze River Delta,China. Atmos Chem Phys,19(6):3673-3685 doi: 10.5194/acp-19-3673-2019
    [39] Lagerquist R,Allen J T,McGovern A. 2020. Climatology and variability of warm and cold fronts over North America from 1979 to 2018. J Climate,33(15):6531-6554 doi: 10.1175/JCLI-D-19-0680.1
    [40] Li J,Wang Z F,Huang H L,et al. 2013. Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus B:Chem Phys Meteor,65(1):20052 doi: 10.3402/tellusb.v65i0.20052
    [41] Li J P,Zheng F,Sun C,et al. 2019. Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate:A review. Adv Atmos Sci,36(9):902-921 doi: 10.1007/s00376-019-8236-5
    [42] Li S L. 2004. Impact of Northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J Meteor Res Jpn. Ser. II,82(4):971-988
    [43] Lin C Y,Wang Z,Chen W N,et al. 2007. Long-range transport of Asian dust and air pollutants to Taiwan:Observed evidence and model simulation. Atmos Chem Phys,7(2):423-434 doi: 10.5194/acp-7-423-2007
    [44] Liu Y Y,Wang L,Zhou W,et al. 2014. Three Eurasian teleconnection patterns:Spatial structures,temporal variability,and associated winter climate anomalies. Climate Dyn,42(11):2817-2839
    [45] Rayner N A,Parker D E,Horton E B,et al. 2003. Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century. J Geophys Res Atmos,108(D14):4407 doi: 10.1029/2002JD002670
    [46] Screen J A,Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature,464(7293):1334-1337 doi: 10.1038/nature09051
    [47] Takaya K,Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci,58(6):608-627 doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [48] Wallace J M,Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev,109(4):784-812 doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [49] Wang N,Zhang Y C. 2015. Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China. Climate Dyn,44(3-4):1017-1028 doi: 10.1007/s00382-014-2171-z
    [50] Zhang Y,Ding A J,Mao H T,et al. 2016. Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China plain during 1980-2013. Atmos Environ,124:119-128 doi: 10.1016/j.atmosenv.2015.05.063
  • 加载中
图(9)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-06-01
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回