留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

副热带高压背景下极端短时强降水的双偏振相控阵雷达观测分析

潘佳文 彭婕 魏鸣 郑秀云 吴伟杰 高珊 吴举秀 蔡菁

潘佳文,彭婕,魏鸣,郑秀云,吴伟杰,高珊,吴举秀,蔡菁. 2022. 副热带高压背景下极端短时强降水的双偏振相控阵雷达观测分析. 气象学报,80(5):1-17 doi: 10.11676/qxxb2022.060
引用本文: 潘佳文,彭婕,魏鸣,郑秀云,吴伟杰,高珊,吴举秀,蔡菁. 2022. 副热带高压背景下极端短时强降水的双偏振相控阵雷达观测分析. 气象学报,80(5):1-17 doi: 10.11676/qxxb2022.060
Pan Jiawen, Peng Jie, Wei Ming, Zheng Xiuyun, Wu Weijie, Gao Shan, Wu Juxiu, Cai Jing. 2022. Analysis of an extreme flash rain event under the background of Subtropical High based on dual-polarization phased array radar observations. Acta Meteorologica Sinica, 80(5):1-17 doi: 10.11676/qxxb2022.060
Citation: Pan Jiawen, Peng Jie, Wei Ming, Zheng Xiuyun, Wu Weijie, Gao Shan, Wu Juxiu, Cai Jing. 2022. Analysis of an extreme flash rain event under the background of Subtropical High based on dual-polarization phased array radar observations. Acta Meteorologica Sinica, 80(5):1-17 doi: 10.11676/qxxb2022.060

副热带高压背景下极端短时强降水的双偏振相控阵雷达观测分析

doi: 10.11676/qxxb2022.060
基金项目: 福建省自然科学基金项目(2021J01450、2021J01465)、 山东省自然科学基金项目(ZR2020MD052)、福建省气象局开放式基金项目(2021KXM02)、厦门市社会发展领域指导性项目(3502Z20214ZD4005)
详细信息
    作者简介:

    潘佳文,主要从事雷达气象研究。E-mail:358465603@qq.com

    通讯作者:

    魏鸣,主要从事大气遥感与灾害性天气预测研究。E-mail: mingwei@nuist.edu.cn

  • 中图分类号: P412.25

Analysis of an extreme flash rain event under the background of Subtropical High based on dual-polarization phased array radar observations

  • 摘要: 为了研究副热带高压(副高)背景下极端短时强降水系统的动力和云物理结构特征,利用厦门X波段双偏振相控阵雷达观测数据,采用多普勒雷达风场反演技术,并结合高精度的地形数据,对2021年8月11日发生在厦门地区的一次极端短时强降水事件进行了分析。研究表明:(1)这次过程发生在副高控制之下,具有弱天气尺度强迫特征。地面辐合线促进了线状对流系统的形成,其后向传播过程导致了局地极端强降水的发生。(2)对流系统的中层存在大粒子累积区,大粒子的下泻导致雨强增大。倾斜上升(下沉)气流的配置使得大粒子的下泻不会压灭上升气流,有利于对流系统的发展与维持。下沉气流与偏南气流相遇,触发了上游对流系统的发展,形成后向传播。(3)在弱天气尺度背景下,局地地形对于降水系统的影响作用得以被凸显。地形所导致的低层辐合使得差分反射率因子(ZDR)、差分传播相移率(KDP)等双偏振参数在迎风坡处明显增大,且大值区在此处维持。更大、更浓密的降水粒子形成了极高的降雨效率。(4)暖雨过程和冰相过程在这次极端降水事件中并存,前者对雨水的形成起主要作用,冰相粒子的融化加速了这一进程。(5)强降水时雨滴的破碎和碰并趋于平衡,雨强的增大取决于雨滴浓度的增加。因此,差分传播相移率可作为判断雨强是否增大的指标。(6) ZDR柱与KDP柱的演变对于地面雨强的变化具有预示性,特别是在持续降水过程中,ZDRKDP)柱的再度发展预示着降水系统的再次增强。

     

  • 图 1  观测仪器分布 (a) 及厦门岛南部地形 (b)

    Figure 1.  Distribution of observation stations (a) and digital elevation map of the southern Xiamen island (b)

    图 2  2021年8月11日02—05时闽南地区3 h累计降水量 (单位:mm)

    Figure 2.  Accumulated 3h precipitation (untin:mm) in southern Fujian from 02:00 to 05:00 BT 11 August 2021

    图 3  2021年8月10日20时中尺度分析 (a) 和厦门站T-lgp图 (b)

    Figure 3.  Mesoscale analysis (a) and T-lgp diagram at Xiamen station (b) at 20:00 BT 10 August 2021

    图 4  2021年8月11日02时21分海沧S波段雷达1.5°仰角反射率因子 (a) 及径向速度 (b)

    Figure 4.  ZH (a) and Vr (b) from Haicang S-band radar taken at 1.5° elevation at 02:21 BT 11 August 2021

    图 5  2021年8月11日03时 (a、d)、03时30分 (b、e) 和04时 (c、f) 海沧X波段相控阵雷达0.9°仰角反射率因子 (a—c) 及径向速度(d—f)(图5a中黑色矩形框为图6的雷达回波分析区域)

    Figure 5.  ZH (a—c) and Vr (d—f) from Haicang X-band phased array radar taken at 0.9° elevation at 03:00 BT (a,d),03:30 BT (b,e) and 04:00 BT (c,f) on 11 August 2021 (The black rectangular box in Fig. 5a denotes the radar echo analysis region of Fig. 6)

    图 6  雷达回波分析区域 (图5a黑色矩形框内) 的东西向 (a、c、e、g、i、k) 和南北向 (b、d、f、h、j、l) 平均反射率因子 (a、b、g、h)、差分反射率因子 (c、d、i、j) 和差分传播相移率 (e、f、k、l) 的时间-距离哈默图 (a—f. 4 km高度,g—l. 1 km高度) 及最大地形高度 (m、n、o、p、q、r)

    Figure 6.  Time-distance Hovmöller diagrams of longitudinal (a,c,e,g,i,k) and latitudinal (b,d,f,h,j,l) mean ZH (a,b,g,h),ZDR (c,d,i,j) and KDP (e,f,k,l) over the analysis domain (black rectangle in Fig. 5a). (a—f) taken at 4 km,(g—l) taken at 1 km,and the maximum topographic profile (m,n,o,p,q,r )

    图 7  2021年8月11日强降水时段 (02时—04时30分) 的反射率因子 (a、d)、差分反射率因子 (b、e) 和差分传播相移率 (c、f) 大值的频率分布 (a—c. 4 km高度,d—f. 1 km高度)

    Figure 7.  Frequency distributions of high ZH (a,d),ZDR (b,e) and KDP (c,f) during the heavy rainfall period from 02:00 to 04:30 BT 11 August 2021 (a—c. taken at 4 km height,d—f. taken at 1 km height)

    图 10  2021年8月11日滨海街道的X波段相控阵雷达反射率因子 (a)、差分反射率因子 (b)、差分传播相移率 (c) 和相关系数 (d) 的时间-高度演变

    Figure 10.  Time-height evolution of ZH (a), ZDR (b),KDP (c) and CC (d) from X-band phased array radar at the Binhai Street site on 11 August 2021

    图 8  2021年8月11日三个时次 ( a. 02时28分,b. 03时05分,c. 03时52分) 2 km高度的反射率因子 (a1—c1)、差分反射率因子 (a2—c2)、差分传播相移率 (a3—c3)、相关系数 (a4—c4) 和垂直速度 (a5—c5

    Figure 8.  CAPPI plots of ZH (a1—c1),ZDR (a2—c2),KDP (a3—c3),CC (a4—c4) and vertical wind (a5—c5) at 2 km height at 02:28 BT(a),03:05 BT(b),03:52 BT (c) August 11 2021

    图 9  同图8,但为4 km高度

    Figure 9.  Same as Fig. 8,but at 4 km height

    图 12  2021年8月11日强降水时段 (02时—04时30分) 的闪电活动分布 (a) 和时间演变 (b)

    Figure 12.  Distribution (a) and temporal evolution (b) of lightning activities during the heavy rainfall period from 02:00 to 04:30 BT 11 August 2021

    图 13  2021年8月11日副高背景下极端短时强降水事件的降水系统概念模型

    Figure 13.  Conceptual model of the precipitation system for extreme flash rain event under the background of Subtropical High on August 11 2021

    表  1  X波段双偏振相控阵雷达的主要技术指标

    Table  1.   Main technique parameters of X-band dual-polarization phased-array radar

    参数名称参数值参数名称参数值
    雷达站点海沧/同安/翔安雷达波长(cm)3.2
    天线高度(m)393.8/68/30极化方式水平/垂直
    工作频率(GHz)9.3—9.5峰值功率(W)300
    接收机噪声系数(dB)≤3.3动态范围(dB)≥85
    脉冲重复频率(Hz)400—4000脉冲宽度(μs)20
    最大探测距离(km)42径向分辨率(m)30
    仰角层数12体扫间隔(s)70
    水平/垂直波束宽度(°)1.2/1.8灵敏度(dBm)110
    下载: 导出CSV
  • [1] 陈明轩,王迎春,肖现等. 2013. 北京“7.21”暴雨雨团的发生和传播机理. 气象学报,71(4):569-592 doi: 10.11676/qxxb2013.053

    Chen M X,Wang Y C,Xiao X,et al. 2013. Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012. Acta Meteor Sinica,71(4):569-592 (in Chinese) doi: 10.11676/qxxb2013.053
    [2] 陈涛,孙军,谌芸等. 2019. 广州“5·7”局地突发特大暴雨过程的数值可预报性分析. 气象,45(9):1199-1212 doi: 10.7519/j.issn.1000-0526.2019.09.002

    Chen T,Sun J,Chen Y,et al. 2019. Study on the numerical predictivity of localized severe mesoscale rainstorm in Guangzhou on 7 May 2017. Meteor Mon,45(9):1199-1212 (in Chinese) doi: 10.7519/j.issn.1000-0526.2019.09.002
    [3] 谌芸,陈涛,汪玲瑶等. 2019. 中国暖区暴雨的研究进展. 暴雨灾害,38(5):483-493

    Chen Y,Chen T,Wang L Y,et al. 2019. A review of the warm-sector rainstorms in China. Torrential Rain Disaster,38(5):483-493 (in Chinese)
    [4] 程元慧,傅佩玲,胡东明等. 2020. 广州相控阵天气雷达组网方案设计及其观测试验. 气象,46(6):823-836 doi: 10.7519/j.issn.1000-0526.2020.06.009

    Cheng Y H,Fu P L,Hu D M,et al. 2020. The Guangzhou phased-array radar networking scheme set-up and observation test. Meteor Mon,46(6):823-836 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.06.009
    [5] 何丽华,王咏青,隆璘雪等. 2020. 弱天气强迫下一次暖区MCSs发生发展研究. 大气科学学报,43(5):810-823 doi: 10.13878/j.cnki.dqkxxb.20191104002

    He L H,Wang Y Q,Long L X,et al. 2020. Study of the occurrence and development of warm-sector MCSs for weak synoptic forcing. Trans Atmos Sci,43(5):810-823 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20191104002
    [6] 李建,宇如聪,孙溦. 2013. 从小时尺度考察中国中东部极端降水的持续性和季节特征. 气象学报,71(4):652-659 doi: 10.11676/qxxb2013.052

    Li J,Yu R C,Sun W. 2013. Duration and seasonality of the hourly extreme rainfall in the central-eastern part of China. Acta Meteor Sinica,71(4):652-659 (in Chinese) doi: 10.11676/qxxb2013.052
    [7] 刘黎平,钱永甫,王致君. 1996. 用双线偏振雷达研究云内粒子相态及尺度的空间分布. 气象学报,54(5):590-599 doi: 10.3321/j.issn:0577-6619.1996.05.008

    Liu L P,Qian Y F,Wang Z J. 1996. The study of spacial distribution of phase and size of hydrometeorsin cloud by dual linear polarization radar. Acta Meteor Sinica,54(5):590-599 (in Chinese) doi: 10.3321/j.issn:0577-6619.1996.05.008
    [8] 刘黎平,胡志群,吴翀. 2016. 双线偏振雷达和相控阵天气雷达技术的发展和应用. 气象科技进展,6(3):28-33

    Liu L P,Hu Z Q,Wu C. 2016. Development and application of dual linear polarization radar and phased-array radar. Adv Meteor Sci Technol,6(3):28-33 (in Chinese)
    [9] 刘璐,冉令坤,周玉淑等. 2015. 北京“7.21”暴雨的不稳定性及其触发机制分析. 大气科学,39(3):583-595 doi: 10.3878/j.issn.1006-9895.1407.14144

    Liu L,Ran L K,Zhou Y S,et al. 2015. Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July 2012. Chinese J Atmos Sci,39(3):583-595 (in Chinese) doi: 10.3878/j.issn.1006-9895.1407.14144
    [10] 罗昌荣,池艳珍,周海光. 2012. 双雷达反演台风外围强带状回波风场结构特征研究. 大气科学,36(2):247-258 doi: 10.3878/j.issn.1006-9895.2011.10222

    Luo C R,Chi Y Z,Zhou H G. 2012. Characteristics of 3-D wind structure of typhoon outer intensive banded echo using dual-Doppler weather radar data. Chinese J Atmos Sci,36(2):247-258 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.10222
    [11] 罗亚丽,孙继松,李英等. 2020. 中国暴雨的科学与预报:改革开放40年研究成果. 气象学报,78(3):419-450 doi: 10.11676/qxxb2020.057

    Luo Y L,Sun J S,Li Y,et al. 2020. Science and prediction of heavy rainfall over China:research progress since the reform and opening-up of the People's Republic of China. Acta Meteor Sinica,78(3):419-450 (in Chinese) doi: 10.11676/qxxb2020.057
    [12] 马舒庆,陈洪滨,王国荣等. 2019. 阵列天气雷达设计与初步实现. 应用气象学报,30(1):1-12 doi: 10.11898/1001-7313.20190101

    Ma S Q,Chen H B,Wang G R,et al. 2019. Design and initial implementation of array weather radar. J Appl Meteor Sci,30(1):1-12 (in Chinese) doi: 10.11898/1001-7313.20190101
    [13] 潘佳文,杨奇志,魏鸣等. 2018. 台风“苏迪罗”螺旋雨带造成福州特大暴雨成因分析. 热带气象学报,34(6):774-782 doi: 10.16032/j.issn.1004-4965.2018.06.006

    Pan J W,Yang Q Z,Wei M,et al. 2018. The analysis of an unusually heavy rain induced by the outer rainband of Typhoon Soudelor in Fuzhou. J Trop Meteor,34(6):774-782 (in Chinese) doi: 10.16032/j.issn.1004-4965.2018.06.006
    [14] 潘佳文,蒋璐璐,魏鸣等. 2020. 一次强降水超级单体的双偏振雷达观测分析. 气象学报,78(1):86-100 doi: 10.11676/qxxb2020.003

    Pan J W,Jiang L L,Wei M,et al. 2020. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica,78(1):86-100 (in Chinese) doi: 10.11676/qxxb2020.003
    [15] 潘佳文,高丽,魏鸣等. 2021. 基于S波段双偏振雷达观测的雹暴偏振特征分析. 气象学报,79(1):168-180

    Pan J W,Gao L,Wei M,et al. 2021. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica,79(1):168-180 (in Chinese)
    [16] 苏永彦,刘黎平. 2022. S波段双偏振雷达和X波段相控阵天气雷达中气旋识别结果对比. 气象,48(2):229-244 doi: 10.7519/j.issn.1000-0526.2021.120101

    Su Y Y,Liu L P. 2022. Comparison of Mesocyclone identification results between S-band dual polarization radar and X-band phased array weather radar. Meteor Mon,48(2):229-244 (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.120101
    [17] 孙继松. 2014. 从天气动力学角度看云物理过程在降水预报中的作用. 气象,40(1):1-6 doi: 10.7519/j.issn.1000-0526.2014.01.001

    Sun J S. 2014. Role of cloud physics in precipitation forecasting by synoptic dynamics. Meteor Mon,40(1):1-6 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.01.001
    [18] 孙晶,楼小凤,史月琴. 2011. 不同微物理方案对一次梅雨锋暴雨过程模拟的影响. 气象学报,69(5):799-809 doi: 10.11676/qxxb2011.070

    Sun J,Lou X F,Shi Y Q. 2011. The effects of different microphysical schemes on the simulation of a Meiyu front heavy rainfall. Acta Meteor Sinica,69(5):799-809 (in Chinese) doi: 10.11676/qxxb2011.070
    [19] 唐佳,叶成志,唐明晖等. 2021. 弱天气尺度背景下湖南两次暖区暴雨对比分析. 高原气象,40(4):815-828

    Tang J,Ye C Z,Tang M H,et al. 2021. Contrast analysis of two warm-sector heavy rainfall processes under weak synoptic scale background in Hunan. Plateau Meteor,40(4):815-828 (in Chinese)
    [20] 田付友,郑永光,张小玲等. 2018. 2017年5月7日广州极端强降水对流系统结构、触发和维持机制. 气象,44(4):469-484 doi: 10.7519/j.issn.1000-0526.2018.04.001

    Tian F Y,Zheng Y G,Zhang X L,et al. 2018. Structure,triggering and maintenance mechanism of convective systems during the Guangzhou extreme rainfall on 7 May 2017. Meteor Mon,44(4):469-484 (in Chinese) doi: 10.7519/j.issn.1000-0526.2018.04.001
    [21] 王坚红,杨艺亚,苗春生等. 2017. 华南沿海暖区辐合线暴雨地形动力机制数值模拟研究. 大气科学,41(4):784-796

    Wang J H,Yang Y Y,Miao C S,et al. 2017. The numerical study of terrain dynamic influence on warm area heavy rainfall of convergence lines in South China coast. Chinese J Atmos Sci,41(4):784-796 (in Chinese)
    [22] 汪玲瑶,谌芸,肖天贵等. 2018. 夏季江南地区暖区暴雨的统计分析. 气象,44(6):771-780

    Wang L Y,Chen Y,Xiao T G,et al. 2018. Statistical analysis of warm-sector rainstorm characteristics over the southern of middle and lower reaches of the Yangtze River in summer. Meteor Mon,44(6):771-780 (in Chinese)
    [23] 王叶红,赵玉春,罗昌荣等. 2019. 双雷达风场反演拼图在登陆台风“莫兰蒂”(1614)强降水精细预报中的同化应用试验. 气象学报,77(4):617-644

    Wang Y H,Zhao Y C,Luo C R,et al. 2019. Assimilation experiments for the application of dual-radar retrieval wind mosaics in detailed heavy precipitation forecast produced by landfall typhoon 'Meranti' (1614). Acta Meteor Sinica,77(4):617-644 (in Chinese)
    [24] 吴滨,林长城,文明章等. 2013. 福建沿海地区海陆风的时空分布特征. 应用海洋学学报,32(1):125-132

    Wu B,Lin C C,Wen M Z,et al. 2013. Spatial and temporal distribution characteristic of sea—land breeze over the Fujian coast. J Appl Oceanogr,32(1):125-132 (in Chinese)
    [25] 吴翀. 2018. 双偏振雷达的资料质量分析,相态识別及组网应用. 南京:南京信息工程大学,150pp

    Wu C. 2018. Data quality analysis,hydrometeor classification and mosaic application of polarimetric radars in China. Nanjing:Nanjing University of Information Science and Technology,150pp (in Chinese)
    [26] 吴梦雯. 2019. 中国极端小时降水的天气背景及其与城市化的关系研究. 北京:中国气象科学研究院,111pp

    Wu M W. 2019. Synoptic situations of extreme hourly precipitation over China and its observed link to urbanization. Beijing:Chinese Academy of Meteorological Sciences,111pp (in Chinese)
    [27] 伍志方,蔡景就,林良勋等. 2018. 2017年广州“5·7”暖区特大暴雨的中尺度系统和可预报性. 气象,44(4):485-499

    Wu Z F,Cai J J,Lin L X,et al. 2018. Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017. Meteor Mon,44(4):485-499 (in Chinese)
    [28] 肖辉,王孝波,周非非等. 2004. 强降水云物理过程的三维数值模拟研究. 大气科学,28(3):385-404

    Xiao H,Wang X B,Zhou F F,et al. 2004. A three-dimensional numerical simulation on microphysical processes of torrential rainstorms. Chinese J Atmos Sci,28(3):385-404 (in Chinese)
    [29] 许焕斌. 2012. 强对流云物理及其应用. 北京: 气象出版社. Xu H B. 2012. The Physics of Severe Convective Storms and Its Application. Beijing: China Meteorological Press (in Chinese)
    [30] 于明慧,刘黎平,吴翀等. 2019. 利用相控阵及双偏振雷达对2016年6月3日华南一次强对流过程的分析. 气象,45(3):330-344 doi: 10.7519/j.issn.1000-0526.2019.03.004

    Yu M H,Liu L P,Wu C,et al. 2019. Analysis of severe convective process in South China on 3 June 2016 using phased-array and dual-polarization radar. Meteor Mon,45(3):330-344 (in Chinese) doi: 10.7519/j.issn.1000-0526.2019.03.004
    [31] 俞小鼎. 2012. 2012年7月21日北京特大暴雨成因分析. 气象,38(11):1313-1329

    Yu X D. 2012. Investigation of Beijing extreme flooding event on 21 July 2012. Meteor Mon,38(11):1313-1329 (in Chinese)
    [32] 俞小鼎. 2013. 短时强降水临近预报的思路与方法. 暴雨灾害,32(3):202-209

    Yu X D. 2013. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disaster,32(3):202-209 (in Chinese)
    [33] 张沛源,陈荣林. 1995. 多普勒速度图上的暴雨判据研究. 应用气象学报,6(3):373-378

    Zhang P Y,Chen R L. 1995. A study of heavy rain signature recognition by radar velocity images. J Appl Meteor Sci,6(3):373-378 (in Chinese)
    [34] Bringi V N,Keenan T D,Chandrasekar V. 2001. Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation:A self-consistent method with constraints. IEEE Trans Geosci Remote Sens,39(9):1906-1915 doi: 10.1109/36.951081
    [35] Bringi V N,Chandrasekar V,Hubbert J,et al. 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci,60(2):354-365 doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [36] Hu Z,Srivastava R C. 1995. Evolution of raindrop size distribution by coalescence,breakup,and evaporation:Theory and observations. J Atmos Sci,52(10):1781-1783
    [37] IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
    [38] Kumjian M R,Ryzhkov A V. 2008. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol,47(7):1940-1961 doi: 10.1175/2007JAMC1874.1
    [39] Ray P S,Ziegler C L,Bumgarner W,et al. 1980. Single- and multiple-Doppler radar observations of tornadic storms. Mon Wea Rev,108(10):1607-1625 doi: 10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2
    [40] Ryzhkov A V, Zrnic D S. 2019. Radar Polarimetry for Weather Observations. Cham: Springer
    [41] Saunders C P R,Bax-Norman H,Emersic C,et al. 2006. Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart J Roy Meteor Soc,132(621):2653-2673 doi: 10.1256/qj.05.218
    [42] Schumacher R S,Johnson R H. 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon Wea Rev,133(4):961-976 doi: 10.1175/MWR2899.1
    [43] Siggia A D, Passarelli Jr R E, 2004. Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculationProceedings of the 3rd European Conference on Radar in Meteorology. Visby, Sweden: ERAD, 67-73
    [44] Wang P Y,Yang J. 2003. Observation and numerical simulation of cloud physical processes associated with torrential rain of the Meiyu front. Adv Atmos Sci,20(1):77-96 doi: 10.1007/BF03342052
    [45] Williams E R,Weber M E,Orville R E. 1989. The relationship between lightning type and convective state of thunderclouds. J Geophys Res:Atmos,94(D11):13213-13220 doi: 10.1029/JD094iD11p13213
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  13
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 录用日期:  2022-08-08
  • 修回日期:  2022-06-07
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回