留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷涡背景下一次微型超级单体龙卷的雷达特征和物理过程探究

袁潮 李得勤 杨磊 张乐坚 杨文艳

袁潮,李得勤,杨磊,张乐坚,杨文艳. 2022. 冷涡背景下一次微型超级单体龙卷的雷达特征和物理过程探究. 气象学报,80(6):878-895 doi: 10.11676/qxxb2022.063
引用本文: 袁潮,李得勤,杨磊,张乐坚,杨文艳. 2022. 冷涡背景下一次微型超级单体龙卷的雷达特征和物理过程探究. 气象学报,80(6):878-895 doi: 10.11676/qxxb2022.063
Yuan Chao, Li Deqin, Yang Lei, Zhang Lejian, Yang Wenyan. 2022. A case study on the radar characteristics and physical process involved in the genesis of a mini supercell tornado under the background of cold vortex. Acta Meteorologica Sinica, 80(6):878-895 doi: 10.11676/qxxb2022.063
Citation: Yuan Chao, Li Deqin, Yang Lei, Zhang Lejian, Yang Wenyan. 2022. A case study on the radar characteristics and physical process involved in the genesis of a mini supercell tornado under the background of cold vortex. Acta Meteorologica Sinica, 80(6):878-895 doi: 10.11676/qxxb2022.063

冷涡背景下一次微型超级单体龙卷的雷达特征和物理过程探究

doi: 10.11676/qxxb2022.063
基金项目: 国家重点研发计划项目(2018YFC1507301)、环渤海科技协同创新项目(QYXM202101)、风云卫星应用先行计划(FY-APP-2021.0114)、中国气象局预报员专项(CMAYBY2020-026)、中国气象局创新发展专项(CXFZ2022J059、2022J003)、东北冷涡研究重点开放实验室开放基金(2022SYIAEKFMS05)
详细信息
    作者简介:

    袁潮,主要从事强对流天气的预报预警和相关研究。E-mail:yuanchao_mare@163.com

    通讯作者:

    李得勤,主要从事中尺度数值预报和资料同化研究。E-mail:lewen05@hotmail.com

  • 中图分类号: P445

A case study on the radar characteristics and physical process involved in the genesis of a mini supercell tornado under the background of cold vortex

  • 摘要: 2019年8月16日渤海北部沿岸出现了一次冷涡背景下的EF1级龙卷。利用营口S波段双偏振多普勒天气雷达探测资料、5 min间隔的地面自动气象站观测资料、盘锦风廓线雷达探测资料及ERA5再分析资料,研究了该龙卷风暴产生的环境条件、龙卷风暴结构特征及龙卷形成的可能物理过程。结果表明:此次龙卷过程发生在500 hPa冷涡主体控制下,低空位于“利奇马”台风残涡西侧水汽输送带内,环境条件表现为弱的风垂直切变和强低层热力不稳定。营口双偏振雷达位于距龙卷发生地15 km处,探测到产生龙卷的微型超级单体钩状回波、下沉反射率核心(DRC)、弱回波洞(WEH)、龙卷残片特征(TDS)等结构。处于消亡阶段雷暴的阵风锋出流向西传播,而营口附近海风锋缓慢东移,两条边界层辐合线相遇加强,在水平切变不稳定的作用下,辐合线上有γ中尺度涡旋形成。辐合线相遇造成的辐合抬升、低层强热力不稳定导致的环境正浮力以及中层中气旋扰动低压共同作用产生强上升气流,γ中尺度涡旋与上升气流叠置,强拉伸作用增强了垂直涡度,可能是低层微尺度气旋形成的关键机制。微尺度气旋直径收缩至最小伴随旋转速度达到最大时刻,对应龙卷生成,中层中气旋与微尺度气旋分离导致龙卷消亡。

     

  • 图 1  (a) 龙卷发生位置及周边观测站网分布,(b) 龙卷路径 (图a中蓝色三角代表龙卷发生位置,红色棱形代表营口雷达位置,红色方形代表盘锦风廓线雷达位置,黄色圆圈代表地面自动气象站;图b基于现场灾情调查得出,图b1为龙卷母云,b2为龙卷本体,b3和b4为受灾示例)

    Figure 1.  (a) Location of the tornado and the distribution of surrounding observation station network,(b) the path of the tornado (the blue triangle in a represents the location of the tornado,the red diamond represents the location of Yingkou radar,the red square represents the location of Panjin wind profile radar,and the yellow circle represents the AWS;b is based on in situ disaster survey,and the illustration b1 is tornadic parent storm,b2 is the Yingkou tornado,b3 and b4 are disaster examples)

    图 2  2019年8月16日14时天气形势 (a、b及c基于ERA5再分析资料绘制,D为环流中心;a中紫等值线为500 hPa位势高度 (单位:dagpm),红虚线为500 hPa等温线 (单位:℃),风羽为500 hPa风场,色阶为500 hPa相对湿度;b为沿a中黑虚线所作剖面,色阶为相对湿度 ,等值线为垂直速度ω (单位:Pa/s),风场为沿剖面经向风与−10 ω的合成风 (矢量,单位:m/s),三角代表龙卷发生地;c中白等值线为850 hPa位势高度,风羽为850 hPa风场,色阶为大气整层可降水量;d为14时FY-4A水汽图像,色阶为亮温,白箭头代表干侵入)

    Figure 2.  Synoptic situation at 14:00 BT 16 August 2019 (a,b and c are based on the ERA5 reanalysis data,D represents the center of circulation; a. geopotential height (purple contour,unit:dagpm),isotherm (red dashed line,unit:℃),wind field and relative humidity (shaded ) at 500 hPa; b. cross section along the black dashed line in a,the shaded are for relative humidity,contours show the vertical velocity (ω,unit:Pa/s),the wind field is meridional wind along the section synthetic with −10 ω (vector,unit:m/s),and the triangle represents location of the tornado; c. 850 hPa geopotential height (white contour,unit:dagpm),850 hPa wind field and PWV (shaded); d. water vapor image of FY-4A at 14:00 BT,the shaded are brightness temperature,the white arrow indicates dry invasion)

    图 3  2019年8月16日 (a) 14时营口T-lgp图,(b) 14—17时盘锦风廓线 (a基于ERA5再分析资料绘制,并根据14时营口地面观测做了修正,绿色(红色)实线代表环境(露点)温度 (单位:℃),左下角给出了对流有效位能和抬升凝结高度,右侧为各层水平风分布)

    Figure 3.  Yingkou T-lgp diagram at 14:00 BT (a),Panjin wind profile from 14:00 to 17:00 BT (b) 16 August 2019 ( a is based on ERA5 reanalysis data and modified with surface observations at Yingkou station at 14:00 BT;the green (red) solid line represent the ambient (dew poin) temperature (unit:℃); CAPE and LCL are given in the bottom-left box;horizontal wind barbs are displayed at the right side of each panel)

    图 4  FY-4A卫星可见光云图 (a. 10时30分,箭头指示水平对流卷的位置;b. 13时30分,椭圆圈指示风暴群位置;c. 14时30分,椭圆圈指示风暴群位置,箭头指示雷暴出流边界及海风锋位置;d. 15时40分,椭圆圈指示龙卷母云风暴位置)

    Figure 4.  Satellite visible images of FY-4A (the arrows indicate the HCRs at 10:30 BT in a; the circles indicate the storms at 13:30 BT in b; the circle indicate the storm,and the arrows indicate the outflow boundary and sea-breeze at 14:30 BT in c; the circle indicates parent storm of Yingkou tornado at 15:40 BT in d)

    图 5  14时至15时40分地面自动气象站要素场 (风羽为地面阵风,单位:m/s;黑色数字为气温,单位:℃;蓝色数字为露点温度,单位:℃) 及营口雷达0.5°仰角反射率 (色阶,单位:dBz)(a. 14时,箭头指示雷暴出流边界及水平对流卷的位置,椭圆圈指示风暴群STB位置;b. 14时20分,箭头指示雷暴出流边界和海风锋的位置,椭圆圈指示风暴群STA和STB位置;c. 14时43分;d. 15时,箭头指示辐合线交汇处;e. 15时20分,箭头指示辐合线上的拐点位置,字母代表辐合线上风暴生成的位置;f. 15时40分)

    Figure 5.  Observations of wind (gust,unit:m/s),temperature (black text,unit:℃),and dewpoint (blue text,unit:℃) of surface weather stations; Reflectivity (shaded,unit:dBz) at the 0.5° elevation from CINRAD-YK are also displayed (the arrows indicate the outflow boundary and HCRs,and the circle indicates STB at 14:00 BT in a;the circles indicate STA and STB,and the arrows indicates the outflow boundary and sea-breeze at 14:20 BT in b; c shows the situation at 14:43 BT;the arrow indicates the boundaries intersection at 15:00 BT in d; the arrow indicates the inflection along the boundary,and the letters represent the storms along the boundary at 15:20 BT in e;f is for the situation at 15:40 BT)

    图 6  15时36分营口雷达0.5°仰角反射率 (a)、径向速度 (b) 及沿a白色实线的反射率 (c)、径向速度 (d)、相关系数 (e)、差分反射率 (f) 的垂直剖面,15时42分营口雷达0.5°仰角基本反射率 (g)、相关系数 (h) (a、b中黑色圆圈代表微尺度气旋位置,a、g、h中白色方框代表下沉反射率因子核心位置,c中黑色虚线所围区域代表下沉反射率因子核位置,c—f中白色虚线所围区域代表ZDR柱位置,f中蓝色虚线代表湿球0℃层高度)

    Figure 6.  Yingkou radar reflectivity (a),radial velocity (b) at 0.5° elevation and profiles of reflectivity (c),radial velocity (d),correlation coefficient (e),differential reflectivity (f) along the solid white line in a at 15:36 BT;Yingkou radar reflectivity (g),correlation coefficient (h) at 0.5° elevation at 15:42 BT (the black circle represents the position of misocyclone in a and b;the white box represents the position of the DRC in a,g,h;the area surrounded by the black dashed line in c represents the position of the DRC;the area surrounded by the white dashed line in c—f represents the position of the ZDR column;and the blue dashed line in f represents the height of the wet bulb 0℃ layer)

    图 7  15时43分营口雷达1.5°仰角反射率 (a)、径向速度 (b)、相关系数 (c)、差分反射率 (d) 及对应剖面 (e、f、g、h)(b中黑色圆圈代表微尺度气旋位置,d中黑色虚线所围区域代表ZDR弧位置,e—h中黑色虚线所围区域代表龙卷残片特征位置,蓝色虚线所围区域代表低信噪比造成的相关系数低值区,白色虚线所围区域代表有界弱回波区位置)

    Figure 7.  Yingkou radar reflectivity (a),radial velocity (b),correlation coefficient (c),differential reflectivity (d) at 1.5° elevation and corresponding profiles (e,f,g,h) at 15:43 BT (the black circle represents the position of misocyclone in b,the area surrounded by the black dashed line represents the ZDR arc position in d,the area surrounded by the black dashed line represents the position of TDS ,the area surrounded by the blue dashed line represents the position of low CC value area caused by low signal-to-noise ratio,and the area surrounded by the white dashed line represents the position of BWER in e—h)

    图 8  15时45分营口雷达4.4°仰角反射率因子 (a),相关系数 (b),径向速度 (c),差分反射率 (d),速度谱宽 (e) 及比差分相移 (f)(黑色圆圈代表微尺度气旋位置,白色虚线所围区域代表ZDR弧位置,蓝色虚线所围区域代表ZDR盾位置,黄色虚线所围区域代表相关系数低值区)

    Figure 8.  Yingkou radar reflectivity (a),correlation coefficient (b),radial velocity (c),differential reflectivity (d),spectrum width (e) and specific differential phase (f) at 4.4° elevation at 15:45 BT (the black circle represents the position of the misocyclone,the area surrounded by the white (blue) dashed line represents the position of the ZDR arc (ZDR shield),and the area surrounded by the yellow dashed line represents the low value area of CC)

    图 9  营口雷达0.5°仰角15时18分 (a)、15时24分 (c) 反射率及15时19分 (b)、15时25分 (d) 径向速度 (圆圈代表初始涡旋位置)

    Figure 9.  Yingkou radar reflectivity at 15:18 BT (a),15:24 BT (c) and radial velocity at 15:19 BT (b),15:25 BT (d) at 0.5° elevation (the circles represent the position of initial vortex)

    图 10  15时18—52分龙卷涡旋的演变 (圆柱颜色表示不同的仰角,大小表示涡旋直径,叉号和圆圈表示旋转速度,灰色阴影区域代表龙卷及地时段)

    Figure 10.  Time—height evolution of the tornado vortex from 15:18 BT to 15:52 BT (cylinder colors (size) indicate elevation (vortex diameter),cross and circles indicate rotational velocity,and the gray shaded area represents the time of the tornado reaching the ground)

    图 11  营口雷达基本反射率 (a. 15时47分0.5°仰角,b. 15时50分3.3°仰角,c. 沿a、b中白线的剖面) 及径向速度 (d. 15时48 分0.5°仰角,e. 15时50分 3.3°仰角,f. 沿d、e中白线的剖面) (a、d中黑色圆圈代表0.5°仰角龙卷残余涡旋位置,对应剖面图中蓝色三角位置,b、e中白色圆圈代表3.3°仰角涡旋位置,c、f中白色虚线所围区域代表中层中气旋位置)

    Figure 11.  Yingkou radar reflectivity at 15:47 BT at 0.5° elevation (a),at 15:50 BT at 3.3° elevation (b),cross section along the white line in a,b (c) and radial velocity at 15:48 BT at 0.5° elevation (d),at 15:50 BT at 3.3° elevation (e),cross section along the white line in d,e (f) (the black circles represent the position of tornado residual vortex at 0.5° elevation in a and d,corresponding to the blue triangle in the cross section,the white circles represent the position of vortex at 3.3° elevation in b and e,and the area surrounded by the white dashed line represents the position of the middle-level mesocyclone in c and f)

    图 12  龙卷形成过程概念模型 (a. 发展阶段,b. 生成阶段)

    Figure 12.  The conception model of tornadogenesis (a. development stage,b. mature stage)

  • 才奎志,姚秀萍,孙晓巍等. 2022. 冷涡背景下辽宁龙卷气候特征和环境条件. 气象学报,80(1):82-92 doi: 10.11676/qxxb2021.063

    Cai K Z,Yao X P,Sun X W,et al. 2022. Climatic characteristics and environmental conditions of tornadoes in Liaoning under the background of cold vortex. Acta Meteor Sinica,80(1):82-92 (in Chinese) doi: 10.11676/qxxb2021.063
    蔡康龙,黄先香,戴春容等. 2021. 2020年8月9日黑龙江绥化龙卷灾情调查与天气雷达识别. 热带气象学报,37(5-6):792-800 doi: 10.16032/j.issn.1004-4965.2021.073

    Cai K L,Huang X X,Dai C R,et al. 2021. Damage survey and weather radar identification of the tornado on August 9,2020 in Suihua,Heilongjiang province. J Trop Meteor,37(5-6):792-800 (in Chinese) doi: 10.16032/j.issn.1004-4965.2021.073
    戴建华,王国荣,龚剑等. 2021. 梅雨锋中尺度涡旋内微型超级单体龙卷的形成研究. 热带气象学报,37(5-6):693-709 doi: 10.16032/j.issn.1004-4965.2021.065

    Dai J H,Wang G R,GONG J,et al. 2021. Analysis of the formation of mini-supercells and associated tornadogenesis within a mesoscale vortex embedded in a Meiyu front. J Trop Meteor,37(5-6):693-709 (in Chinese) doi: 10.16032/j.issn.1004-4965.2021.065
    刁秀广,万明波,高留喜等. 2014. 非超级单体龙卷风暴多普勒天气雷达产品特征及预警. 气象,40(6):668-677 doi: 10.7519/j.issn.1000-0526.2014.06.003

    Diao X G,Wan M B,Gao L X,et al. 2014. Doppler radar product features and warning of non-supercell tornadic storms. Meteor Mon,40(6):668-677 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.06.003
    范雯杰,俞小鼎. 2015. 中国龙卷的时空分布特征. 气象,41(7):793-805 doi: 10.7519/j.issn.1000-0526.2015.07.001

    Fan W J,Yu X D. 2015. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor Mon,41(7):793-805 (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.07.001
    冯佳玮,闵锦忠,庄潇然. 2017. 中国龙卷时空分布及其环境物理量特征. 热带气象学报,33(4):530-539 doi: 10.16032/j.issn.1004-4965.2017.04.010

    Feng J W,Min J Z,Zhuang X R. 2017. The spatial and temporal distribution of Chinese tornados and their characteristics analysis of environmental physical variations. J Trop Meteor,33(4):530-539 (in Chinese) doi: 10.16032/j.issn.1004-4965.2017.04.010
    黄先香,俞小鼎,炎利军等. 2019. 1804号台风“艾云尼”龙卷分析. 气象学报,77(4):645-661 doi: 10.11676/qxxb2019.055

    Huang X X,Yu X D,Yan L J,et al. 2019. An analysis on tornadoes in typhoon Ewiniar. Acta Meteor Sinica,77(4):645-661 (in Chinese) doi: 10.11676/qxxb2019.055
    王秀明,俞小鼎,周小刚. 2015. 中国东北龙卷研究:环境特征分析. 气象学报,73(3):425-441 doi: 10.11676/qxxb2015.031

    Wang X M,Yu X D,Zhou X G. 2015. Study of northeast China torandoes:The environmental characteristics. Acta Meteor Sinica,73(3):425-441 (in Chinese) doi: 10.11676/qxxb2015.031
    王秀明,俞小鼎. 2019. 热带一次致灾龙卷形成物理过程研究. 气象学报,77(3):387-404 doi: 10.11676/qxxb2019.031

    Wang X M,Yu X D. 2019. A study on the physical process involved in the genesis of a severe tropical tornado. Acta Meteor Sinica,77(3):387-404 (in Chinese) doi: 10.11676/qxxb2019.031
    魏文秀,赵亚民. 1995. 中国龙卷风的若干特征. 气象,21(5):36-40 doi: 10.7519/j.issn.1000-0526.1995.05.008

    Wei W X,Zhao Y M. 1995. The characteristics of tornadoes in China. Meteor Mon,21(5):36-40 (in Chinese) doi: 10.7519/j.issn.1000-0526.1995.05.008
    俞小鼎,郑媛媛,廖玉芳等. 2008. 一次伴随强烈龙卷的强降水超级单体风暴研究. 大气科学,32(3):508-522 doi: 10.3878/j.issn.1006-9895.2008.03.08

    Yu X D,Zheng Y Y,Liao Y F,et al. 2008. Observational investigation of a tornadic heavy precipitation supercell storm. Chinese J Atmos Sci,32(3):508-522 (in Chinese) doi: 10.3878/j.issn.1006-9895.2008.03.08
    俞小鼎,郑永光. 2020. 中国当代强对流天气研究与业务进展. 气象学报,78(3):391-418 doi: 10.11676/qxxb2020.035

    Yu X D,Zheng Y G. 2020. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica,78(3):391-418 (in Chinese) doi: 10.11676/qxxb2020.035
    袁潮,王式功,马湘宜等. 2021. 2019年7月3日开原龙卷形成环境背景及机理探究. 高原气象,40(2):384-393 doi: 10.7522/j.issn.1000-0534.2020.00061

    Yuan C,Wang S G,Ma X Y,et al. 2021. Environmental background and formative mechanisms of a tornado occurred in Kaiyuan on 3 July 2019. Plateau Meteor,40(2):384-393 (in Chinese) doi: 10.7522/j.issn.1000-0534.2020.00061
    张一平,俞小鼎,吴蓁等. 2012. 区域暴雨过程中两次龙卷风事件分析. 气象学报,70(5):961-973 doi: 10.11676/qxxb2012.081

    Zhang Y P,Yu X D,Wu Z,et al. 2012. Analysis of the two tornado events during a process of regional torrential rain. Acta Meteor Sinica,70(5):961-973 (in Chinese) doi: 10.11676/qxxb2012.081
    郑永光. 2020. 中国龙卷气候特征和环境条件研究进展综述. 气象科技进展,10(6):69-75 doi: 10.3969/j.issn.2095-1973.2020.06.012

    Zheng Y G. 2020. Review of climatology and favorable environmental conditions of tornado in China. Adv Meteor Sci Technol,10(6):69-75 (in Chinese) doi: 10.3969/j.issn.2095-1973.2020.06.012
    郑永光,蓝渝,曹艳察等. 2020. 2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理. 气象,46(5):589-602 doi: 10.7519/j.issn.1000-0526.2020.05.001

    Zheng Y G,Lan Y,Cao Y C,et al. 2020. Environmental conditions,evolution and mechanisms of the EF4 tornado in Kaiyuan of Liaoning province on 3 July 2019. Meteor Mon,46(5):589-602 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.05.001
    郑永光,刘菲凡,张恒进. 2021. 中国龙卷研究进展. 气象,47(11):1319-1335 doi: 10.7519/j.issn.1000-0526.2021.11.002

    Zheng Y G,Liu F F,Zhang H J. 2021. Advances in tornado research in China. Meteor Mon,47(11):1319-1335 (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.11.002
    郑媛媛,张备,王啸华等. 2015. 台风龙卷的环境背景和雷达回波结构分析. 气象,41(8):942-952 doi: 10.7519/j.issn.1000-0526.2015.08.003

    Zheng Y Y,Zhang B,Wang X H,et al. 2015. Analysis of typhoon-tornado weather background and radar echo structure. Meteor Mon,41(8):942-952 (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.08.003
    中国气象局. 2019. 龙卷强度等级(QX/T 478-2019). 北京: 气象出版社, 1-4

    China Meteorological Administration. 2019. Tornado intensity scale (QX/T 478-2019). Beijing: China Meteorological Press, 1-4 (in Chinese)
    周后福,刁秀广,夏文梅等. 2014. 江淮地区龙卷超级单体风暴及其环境参数分析. 气象学报,72(2):306-317 doi: 10.11676/qxxb2014.016

    Zhou H F,Diao X G,Xia W M,et al. 2014. Analysis of the tornado supercell storm and its environmental parameters in the Yangtze-Huaihe region. Acta Meteor Sinica,72(2):306-317 (in Chinese) doi: 10.11676/qxxb2014.016
    Atkins N T,Laurent M S. 2009. Bow echo mesovortices. Part Ⅱ:Their genesis. Mon Wea Rev,137(5):1514-1532 doi: 10.1175/2008MWR2650.1
    Bai L Q,Meng Z Y,Huang L,et al. 2017. An integrated damage,visual,and radar analysis of the 2015 Foshan,Guangdong,EF3 Tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull Amer Meteor Soc,98(12):2619-2640 doi: 10.1175/BAMS-D-16-0015.1
    Burgess D W,Lemon L R,Brown R A. 1975. Tornado characteristics revealed by Doppler radar. Geophys Res Lett,2(5):183-184 doi: 10.1029/GL002i005p00183
    Byko Z,Markowski P,Richardson Y,et al. 2009. Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea Forecasting,24(1):155-186 doi: 10.1175/2008WAF2222116.1
    Davies J M. 2006. Tornadoes with cold core 500-mb lows. Wea Forecasting,21(6):1051-1062 doi: 10.1175/WAF967.1
    Davies-Jones R. 1984. Streamwise vorticity:The origin of updraft rotation in supercell storms. J Atmos Sci,41(20):2991-3006 doi: 10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
    Davies-Jones R, Trapp R J, Bluestein H B. 2001. Tornadoes and tornadic storms∥Doswell Ⅲ C A. Severe Convective Storms. Boston, MA: American Meteorological Society, 167-221
    Dowell D C,Alexander C R,Wurman J M,et al. 2005. Centrifuging of hydrometeors and debris in tornadoes:Radar-reflectivity patterns and wind-measurement errors. Mon Wea Rev,133(6):1501-1524 doi: 10.1175/MWR2934.1
    French M M,Bluestein H B,Popstefanija I,et al. 2013. Reexamining the vertical development of tornadic vortex signatures in supercells. Mon Wea Rev,141(12):4576-4601 doi: 10.1175/MWR-D-12-00315.1
    Fujita T T. 1981. Tornadoes and downbursts in the context of generalized planetary scales. J Atmos Sci,38(8):1511-1534 doi: 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
    Kennedy A,Straka J M,Rasmussen E N. 2007. A statistical study of the association of DRCs with supercells and tornadoes. Wea Forecasting,22(6):1191-1199 doi: 10.1175/2007WAF2006095.1
    Kennedy P C,Westcott N E,Scott R W. 1993. Single-Doppler radar observations of a mini-supercell tornadic thunderstorm. Mon Wea Rev,121(6):1860-1870 doi: 10.1175/1520-0493(1993)121<1860:SDROOA>2.0.CO;2
    Klemp J B,Rotunno R. 1983. A study of the tornadic region within a supercell thunderstorm. J Atmos Sci,40(2):359-377 doi: 10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2
    Kumjian M R,Ryzhkov A V. 2008. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol,47(7):1940-1961 doi: 10.1175/2007JAMC1874.1
    Kumjian M R,Khain A P,Benmoshe N,et al. 2014. The anatomy and physics of ZDR columns:Investigating a polarimetric radar signature with a spectral bin microphysical model. J Appl Meteor Climatol,53(7):1820-1843 doi: 10.1175/JAMC-D-13-0354.1
    Lee B D,Wilhelmson R B. 2000. The numerical simulation of nonsupercell tornadogenesis. Part Ⅲ:Parameter tests investigating the role of CAPE,vortex sheet strength,and boundary layer vertical shear. J Atmos Sci,57(14):2246-2261 doi: 10.1175/1520-0469(2000)057<2246:TNSONT>2.0.CO;2
    Markowski P, Richardson Y. 2010. Organization of isolated convection∥Markowski P, Richardson Y. Mesoscale Meteorology in Midlatitudes. West Sussex, UK: John Wiley & Sons, Ltd. , 201-244
    Markowski P M,Straka J M. 2000. Some observations of rotating updrafts in a low-buoyancy,highly sheared environment. Mon Wea Rev,128(2):449-461 doi: 10.1175/1520-0493(2000)128<0449:SOORUI>2.0.CO;2
    Marquis J N,Richardson Y P,Wurman J M. 2007. Kinematic observations of misocyclones along boundaries during IHOP. Mon Wea Rev,135(5):1749-1768 doi: 10.1175/MWR3367.1
    Marquis J N,Richardson Y P,Markowski P M,et al. 2012. Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon Wea Rev,140(1):3-27 doi: 10.1175/MWR-D-11-00025.1
    Marwitz J D,Auer Jr A H,Veal D L. 1972. Locating the organized updraft on severe thunderstorms. J Appl Meteor,11(1):236-238 doi: 10.1175/1520-0450(1972)011<0236:LTOUOS>2.0.CO;2
    Meng Z Y,Bai L Q,Zhang M R,et al. 2018. The deadliest tornado (EF4) in the past 40 years in China. Wea Forecasting,33(3):693-713 doi: 10.1175/WAF-D-17-0085.1
    Rasmussen E N,Blanchard D O. 1998. A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea Forecasting,13(4):1148-1164 doi: 10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
    Rasmussen E N. 2003. Refined supercell and tornado forecast parameters. Wea Forecasting,18(3):530-535 doi: 10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2
    Rasmussen E N,Straka J M,Gilmore M S,et al. 2006. A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea Forecasting,21(6):923-938 doi: 10.1175/WAF962.1
    Ryzhkov A V,Schuur T J,Burgess D W,et al. 2005. Polarimetric tornado detection. J Appl Meteor,44(5):557-570 doi: 10.1175/JAM2235.1
    Schultz C J,Carey L D,Schultz E V,et al. 2012. Dual-polarization tornadic debris signatures. Part Ⅰ:Examples and utility in an operational setting. Electron J Operational Meteor,13(9):120-137
    Stumpf G J,Witt A,Mitchell E D,et al. 1998. The national severe storms laboratory mesocyclone detection algorithm for the WSR-88D. Wea Forecasting,13(2):304-326 doi: 10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
    Trapp R J,Mitchell E D,Tipton G A,et al. 1999. Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea Forecasting,14(5):625-639 doi: 10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2
    Trapp R J,Weisman M L. 2003. Low-level mesovortices within squall lines and bow echoes. Part Ⅱ:Their genesis and implications. Mon Wea Rev,131(11):2804-2823 doi: 10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2
    Wakimoto R M,Wilson J W. 1989. Non-supercell tornadoes. Mon Wea Rev,117(6):1113-1140 doi: 10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2
    Wilson J W. 1986. Tornadogenesis by nonprecipitation induced wind shear lines. Mon Wea Rev,114(2):270-284 doi: 10.1175/1520-0493(1986)114<0270:TBNIWS>2.0.CO;2
    Wilson J W,Foote G B,Cṙook N A,et al. 1992. The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms:A case study. Mon Wea Rev,120(9):1785-1815 doi: 10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2
    WSEC. 2006. A Recommendation for An Enhanced Fujita Scale (EF-Scale). Lubbock, TX: Wind Science and Engineering Center, 95pp
    Yao Y Q,Yu X D,Zhang Y J,et al. 2015. Climate analysis of tornadoes in China. J Meteor Res,29(3):359-369 doi: 10.1007/s13351-015-4983-0
    Zhao K,Wang M J,Xue M,et al. 2017. Doppler radar analysis of a tornadic miniature supercell during the landfall of typhoon Mujigae (2015) in South China. Bull Amer Meteor Soc,98(9):1821-1831 doi: 10.1175/BAMS-D-15-00301.1
  • 加载中
图(12)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  40
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 录用日期:  2022-10-19
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-06-15

目录

    /

    返回文章
    返回