留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带气旋大风风圈半径非对称性特征及成因简析

于玲玲 麦健华 程正泉 郭春迓

于玲玲,麦健华,程正泉,郭春迓. 2022. 热带气旋大风风圈半径非对称性特征及成因简析. 气象学报,80(6):896-908 doi: 10.11676/qxxb2022.064
引用本文: 于玲玲,麦健华,程正泉,郭春迓. 2022. 热带气旋大风风圈半径非对称性特征及成因简析. 气象学报,80(6):896-908 doi: 10.11676/qxxb2022.064
Yu Lingling, Mai Jianhua, Cheng Zhengquan, Guo Chunya. 2022. Analysis on the asymmetric characteristics and causes of the wind circle radius of tropical cyclones. Acta Meteorologica Sinica, 80(6):896-908 doi: 10.11676/qxxb2022.064
Citation: Yu Lingling, Mai Jianhua, Cheng Zhengquan, Guo Chunya. 2022. Analysis on the asymmetric characteristics and causes of the wind circle radius of tropical cyclones. Acta Meteorologica Sinica, 80(6):896-908 doi: 10.11676/qxxb2022.064

热带气旋大风风圈半径非对称性特征及成因简析

doi: 10.11676/qxxb2022.064
基金项目: 广东省重点研发领域项目(2019B111101002)、广东省气象局科技创新团队(GRMCTD202102)、广东省气象局科学技术研究项目(GRMC2020M07)
详细信息
    作者简介:

    于玲玲,主要从事热带气旋及中短期天气预报工作。E-mail:616123029@qq.com

    通讯作者:

    程正泉,主要从事热带气旋预报及研究工作。E-mail:chengzq1975@126.com

  • 中图分类号: P444

Analysis on the asymmetric characteristics and causes of the wind circle radius of tropical cyclones

  • 摘要: 为进一步完善热带气旋大风风圈的分析和预报业务,利用中央气象台(NMC)发布的热带气旋报文资料、ERA5再分析资料,研究了2015年6月30日至2020年12月31日热带气旋最大强度时的7、10和12级风圈的非对称性特征及成因。统计结果表明: 热带气旋的7级风圈半径非对称性最大,10级次之,12级最小;非对称分布热带气旋的7、10和12级风圈最大半径大多分布在东北、东南和西北象限;同一热带气旋的7级和10级风圈最大半径大多分布在相同的象限。将7级风圈单一象限分布的热带气旋与多象限分布的热带气旋各按象限分布分成4类,分析4类7级风圈单一象限分布的热带气旋生成季节、地面10 m风特征及风圈非对称分布的成因发现:各类热带气旋具有明显的季节特征;地面10 m风场呈不对称分布;风圈非对称分布与西太平洋副热带高压、西南气流及地面冷高压等天气系统与热带气旋的相互作用造成的各象限位势高度梯度非对称分布密切相关。

     

  • 图 1  计算4个象限位势高度梯度的格点选取示意

    Figure 1.  Sketch map of grid points selection for calculating geopotential height gradient in four quadrants

    图 2  研究时段内各强度等级热带气旋的个数 (括号内) 和占比 (单位:%)

    Figure 2.  Numbers (in brackets) and proportion (unit:%) of TCs in each strength level during the study period

    图 3  7、10和12级风圈最大半径与最小半径之比的箱线图

    Figure 3.  Box-plot of the ratio of 55.6,92.6 and 118.5 km/h wind circle maximum radii to minimum radii

    图 4  不同强度等级的热带气旋在各类( 第1—4类,按象限排列)中的频次 (柱状) 和同一强度等级的热带气旋频次在各类中的占比 (折线)

    Figure 4.  Frequency (histogram) of TCs with different strength levels in each type (the first—fourth type,according to quadrant) of TC,and proportion of TCs wtih the same strength level in each type of TC (broken line)

    图 5  不同强度等级的热带气旋在各类中的个数 (柱状) 及同一强度等级热带气旋个数在各类中的占比 (折线)

    Figure 5.  Number (histogram) of TCs with different strength levels in each type of TC,and proportion of TCs with the same strength level in each type of TC (broken line)

    图 6  不同生成季节的热带气旋在各类热带气旋中的个数 (a) 及相同生成季节的热带气旋在各类热带气旋中的占比 (b)

    Figure 6.  Number of TCs with different generation seasons in each type of TC (a) and proportion of TCs with the same generation season in each type of TC (b)

    图 7  各类热带气旋 (a. 第一类,b. 第二类,c. 第三类,d. 第四类) 地面10 m风场 (色阶,单位:m/s) 和流场

    Figure 7.  Surface wind field (shaded,unit:m/s) and flow field of TC in each type (a. the first type,b. the second type,c. the third type,d. the fourth type)

    图 8  第一类热带气旋合成的500 hPa (a)、850 hPa (b) 风场 (单位:m/s) 和位势高度场 (单位:dagpm),地面10 m风场 (单位:m/s) 和海平面气压场 (c) (单位:hPa) 及各象限内平均位势高度梯度的垂直变化 (d) (单位:dagpm) (a、b、c中黑色等值线为位势高度或海平面气压等值线,灰色区域为风速≥8 m/s)

    Figure 8.  Wind field (unit:m/s) and geopotential height field (unit:dagpm) at 500 hPa (a) and 850 hPa (b),surface wind (unit:m/s) and sea level pressure field (unit:hPa) (c) and vertical variation of average geopotential height gradient (unit:dagpm) in each quadrant (d) synthesized by the first type of TC (black lines in a,b and c are geopotential height and sea level pressure contours,respectively,the grey area indicates wind speed≥8 m/s)

    图 9  同图8,但为第二类热带气旋合成场

    Figure 9.  The same as Fig. 8 but it is the synthetic fields of the second type of TC

    图 10  同图8,但为第三类热带气旋合成场

    Figure 10.  The same as Fig. 8 but it is the synthetic fields of the third type of TC

    图 11  同图8,但为第四类热带气旋合成场

    Figure 11.  The same as Fig. 8 but it is the synthetic fields of the fourth type of TC

    表  1  热带气旋的7、10、12级风圈最大半径象限分布统计

    Table  1.   Statistics of TC with 55.6 km/h,92.6 km/h,118.5 km/h wind circle maximum radii in quadrant distribution

    风级对称分布
    热带气旋
    (个)
    非对称分布热带气旋(个)总数
    (个)
    单一象限
    分布热带
    气旋
    多象限分布热带气旋
    NE、SENE、NWSE、SWSE、NWSW、NWNE、SWNE、SE、
    SW
    NE、SE、
    NW
    NE、SW、
    NW
    SE、SW、
    NW
    7级 581202554115120150
    10级4020141252203101100
    12级49 5 31200001000 70
    下载: 导出CSV

    表  2  非对称分布热带气旋的7级、10级风圈最大半径在各象限的热带气旋频次及同一热带气旋 7级、10级风圈最大半径分布在相同象限的热带气旋频次和占比

    Table  2.   Frequency of asymmetric TCs with 55.6,92.6 km/h wind circle maximum radii in four quadrants,and frequency and proportion of individual asymmetric TCs with 55.6,92.6 km/h wind circle maximum radii in the same quadrant

    多象限分布热带气旋(单位:次)占比(C/A,单位:%)单一象限分布热带气旋(单位:次)占比(C/A,单位:%)
    ABCABC
    NE41433892.6815131386.67
    SE25292184.00 7 5 571.43
    SW 810 450.00 1 0 0 0.00
    NW17181482.35 4 2 250.00
    下载: 导出CSV
  • 毕鑫鑫,陈光华,周伟灿. 2018. 超强台风“天鹅”(2015)路径突变过程机理研究. 大气科学,42(1):227-238

    Bi X X,Chen G H,Zhou W C. 2018. A mechanism study on the sudden track change of super typhoon Goni (2015). Chinese J Atmos Sci,42(1):227-238 (in Chinese)
    卜松,李英. 2020. 华东登陆热带气旋降水不同分布的对比分析. 大气科学,44(1):27-38

    Bu S,Li Y. 2020. Comparative analysis of precipitation distributions of tropical cyclones making landfall in East China. Chinese J Atmos Sci,44(1):27-38 (in Chinese)
    曹楚,王忠东,郑峰. 2013. 台风“莫拉克”影响期间浙江大风成因分析. 气象科技,41(6):1109-1115 doi: 10.3969/j.issn.1671-6345.2013.06.026

    Cao C,Wang Z D,Zheng F. 2013. Causal analysis of strong wind weather in Zhejiang induced by typhoon Morakot. Meteor Sci Technol,41(6):1109-1115 (in Chinese) doi: 10.3969/j.issn.1671-6345.2013.06.026
    陈联寿,徐祥德,解以扬等. 1997. 台风异常运动及其外区热力不稳定非对称结构的影响效应. 大气科学,21(1):83-90 doi: 10.3878/j.issn.1006-9895.1997.01.09

    Chen L S,Xu X D,Xie Y Y,et al. 1997. The effect of tropical cyclone asymmetric thermodynamic structure on its unusual motion. Sci Atmos Sinica,21(1):83-90 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.01.09
    程正泉,陈联寿,李英. 2009. 登陆台风降水的大尺度环流诊断分析. 气象学报,67(5):840-850 doi: 10.3321/j.issn:0577-6619.2009.05.015

    Cheng Z Q,Chen L S,Li Y. 2009. Diagnostic analysis of large-scale circulation features associated with strong and weak landfalling typhoon precipitation events. Acta Meteor Sinica,67(5):840-850 (in Chinese) doi: 10.3321/j.issn:0577-6619.2009.05.015
    端义宏,余晖,伍荣生. 2005. 热带气旋强度变化研究进展. 气象学报,63(5):636-645 doi: 10.3321/j.issn:0577-6619.2005.05.009

    Duan Y H,Yu H,Wu R S. 2005. Review of the research in the intensity change of tropical cyclone. Acta Meteor Sinica,63(5):636-645 (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.05.009
    费建芳,刘磊,黄小刚等. 2013. 热带气旋眼墙非对称结构的研究综述. 气象学报,71(5):987-995 doi: 10.11676/qxxb2013.071

    Fei J F,Liu L,Huang X G,et al. 2013. Review of the studies of the asymmetric structure of the eyewall of a tropical cyclone. Acta Meteor Sinica,71(5):987-995 (in Chinese) doi: 10.11676/qxxb2013.071
    胡娅敏,王永光,王娟怀等. 2017. 登陆华南台风强度的前兆信号分析及预测. 气象,43(10):1278-1286 doi: 10.7519/j.issn.10000526.2017.10.012

    Hu Y M,Wang Y G,Wang J H,et al. 2017. Precursor signal analysis and prediction for the landfall typhoon intensity over south China. Meteor Mon,43(10):1278-1286 (in Chinese) doi: 10.7519/j.issn.10000526.2017.10.012
    黄先香,俞小鼎,炎利军等. 2019. 1804号台风“艾云尼”龙卷分析. 气象学报,77(4):645-661 doi: 10.11676/qxxb2019.055

    Huang X X,Yu X D,Yan L J,et al. 2019. An analysis on tornadoes in typhoon Ewiniar. Acta Meteor Sinica,77(4):645-661 (in Chinese) doi: 10.11676/qxxb2019.055
    李英,陈联寿,王继志. 2004. 登陆热带气旋长久维持与迅速消亡的大尺度环流特征. 气象学报,60(2):167-179 doi: 10.3321/j.issn:0577-6619.2004.02.004

    Li Y,Chen L S,Wang J Z. 2004. The diagnostic analysis on the characteristics of large scale circulation corresponding to the sustaining and decaying of tropical cyclone after it's landfall. Acta Meteor Sinica,60(2):167-179 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.02.004
    梁莉,崔晓鹏,王成鑫等. 2018. 我国登陆热带气旋引起的大陆地面风场分布. 大气科学,42(1):96-108

    Liang L,Cui X P,Wang C X,et al. 2018. Characteristic distribution of surface winds associated with landfalling tropical cyclones in mainland China. Chinese J Atmos Sci,42(1):96-108 (in Chinese)
    覃丽,吴启树,曾小团等. 2019. 对流非对称台风“天鸽”(1713)近海急剧增强成因分析. 暴雨灾害,38(3):212-220

    Qin L,Wu Q S,Zeng X T,et al. 2019. Analysis on cause of rapid intensification of asymmetrical Typhoon Hato (1713) over the offshore of China. Torrential Rain Disaster,38(3):212-220 (in Chinese)
    宋攀,钟中,齐琳琳等. 2017. 局地海表温度异常影响热带气旋路径的模拟研究. 气象科学,37(6):735-741

    Song P,Zhong Z,Qi L L,et al. 2017. A numerical study on the influence of abnormal local sea surface temperature on the track of tropical cyclone. Scientia Meteor Sinica,37(6):735-741 (in Chinese)
    魏应植,汤达章,许健民等. 2007. 多普勒雷达探测“艾利”台风风场不对称结构. 应用气象学报,18(3):285-294 doi: 10.3969/j.issn.1001-7313.2007.03.004

    Wei Y Z,Tang D Z,Xu J M,et al. 2007. The asymmetric wind structure of Typhoon Aere detected by Doppler radar. J Appl Meteor Sci,18(3):285-294 (in Chinese) doi: 10.3969/j.issn.1001-7313.2007.03.004
    吴天贻,周玉淑,王咏青等. 2021. 两次不同季风强度背景下的西行台风登陆过程降水特征对比分析. 大气科学,45(6):1173-1186

    Wu T Y,Zhou Y S,Wang Y Q,et al. 2021. Comparative analysis of precipitation characteristics of the westward typhoon cases "Bilis" and "Sepat" during landfall under different monsoon intensities. Chinese J Atmos Sci,45(6):1173-1186 (in Chinese)
    向纯怡,吴立广,田伟等. 2016. 多平台热带气旋表面风场资料在台风结构分析中的应用. 气象,42(11):1315-1324 doi: 10.7519/j.issn.1000-0526.2016.11.003

    Xiang C Y,Wu L G,Tian W,et al. 2016. Applications of MTCSWA data to the characteristic analysis of tropical cyclone structure. Meteor Mon,42(11):1315-1324 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.11.003
    邢蕊,徐晶,林瀚. 2020. 热带气旋过台湾后再次登陆的路径强度变化统计分析. 气象,46(4):517-527 doi: 10.7519/j.issn.1000-0526.2020.04.006

    Xing R,Xu J,Lin H. 2020. Statistical analysis of track and intensity variations of tropical cyclone landing mainland after passing through Taiwan. Meteor Mon,46(4):517-527 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.04.006
    徐祥德,陈联寿,解以扬等. 1996. TCM-90现场科学试验台风FLO“β陀螺”“通风流”非对称动力结构特征. 气象学报,54(5):536-543 doi: 10.3321/j.issn:0577-6619.1996.05.003

    Xu X D,Chen L S,Xie Y Y,et al. 1996. The asymmetric and dynamic structure of the "β-top" diploe and "ventilation flow" of the target typhoon FLO during TCM-90 field experiment. Acta Meteor Sinica,54(5):536-543 (in Chinese) doi: 10.3321/j.issn:0577-6619.1996.05.003
    杨玉华,雷小途. 2004. 我国登陆台风引起的大风分布特征的初步分析. 热带气象学报,20(6):633-642 doi: 10.3969/j.issn.1004-4965.2004.06.003

    Yang Y H,Lei X T. 2004. Statistics of strong wind distribution caused by landfall typhoon in China. J Trop Meteor,20(6):633-642 (in Chinese) doi: 10.3969/j.issn.1004-4965.2004.06.003
    张定媛,田晓阳,贾朋群. 2018. 热带气旋预报性能及指标综合评述. 气象,44(12):1628-1634 doi: 10.7519/j.issn.10000526.2018.12.013

    Zhang D Y,Tian X Y,Jia P Q. 2018. Review on performance and index of tropical cyclone forecast. Meteor Mon,44(12):1628-1634 (in Chinese) doi: 10.7519/j.issn.10000526.2018.12.013
    赵小平,朱晶晶,樊晶等. 2016. 强台风海鸥登陆期间近地层风特性分析. 气象,42(4):415-423 doi: 10.7519/j.issn.1000-0526.2016.04.004

    Zhao X P,Zhu J J,Fan J,et al. 2016. Analysis on wind characteristics in surface layer during landfall of typhoon Kalmaegi. Meteor Mon,42(4):415-423 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.04.004
    Chan K T F,Chan J C L. 2012. Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon Wea Rev,140(3):811-824 doi: 10.1175/MWR-D-10-05062.1
    Chen L S,Luo Z X. 1998. Numerical study on functions affecting tropical cyclone structure and motion. J Meteor Res,12(4):504-512
    Gray W M. 1979. Recent Advances in Tropical Cyclone Research from Rawinsonde Composite Analysis. WMO Programme on Research in Tropical Meteorology. Colorado:WMO,407pp
    Knaff J A,Slocum C J,Musgrave K D,et al. 2016. Using routinely available information to estimate tropical cyclone wind structure. Mon Wea Rev,144(4):1233-1247 doi: 10.1175/MWR-D-15-0267.1
    Lee W C,Marks F D. 2000. Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part Ⅱ:The GBVTD-simplex center finding algorithm. Mon Wea Rev,128(6):1925-1936 doi: 10.1175/1520-0493(2000)128<1925:TCKSRF>2.0.CO;2
    Mueller K J,Demaria M,Knaff J,et al. 2006. Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea Forecasting,21(6):990-1005 doi: 10.1175/WAF955.1
    Song J J,Klotzbach P J. 2016. Wind structure discrepancies between two best track datasets for western North Pacific tropical cyclones. Mon Wea Rev,144(12):4533-4551 doi: 10.1175/MWR-D-16-0163.1
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  24
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 录用日期:  2022-11-07
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回