Analysis on the asymmetric characteristics and causes of the wind circle radius of tropical cyclones
-
摘要: 为进一步完善热带气旋大风风圈的分析和预报业务,利用中央气象台(NMC)发布的热带气旋报文资料、ERA5再分析资料,研究了2015年6月30日至2020年12月31日热带气旋最大强度时的7、10和12级风圈的非对称性特征及成因。统计结果表明: 热带气旋的7级风圈半径非对称性最大,10级次之,12级最小;非对称分布热带气旋的7、10和12级风圈最大半径大多分布在东北、东南和西北象限;同一热带气旋的7级和10级风圈最大半径大多分布在相同的象限。将7级风圈单一象限分布的热带气旋与多象限分布的热带气旋各按象限分布分成4类,分析4类7级风圈单一象限分布的热带气旋生成季节、地面10 m风特征及风圈非对称分布的成因发现:各类热带气旋具有明显的季节特征;地面10 m风场呈不对称分布;风圈非对称分布与西太平洋副热带高压、西南气流及地面冷高压等天气系统与热带气旋的相互作用造成的各象限位势高度梯度非对称分布密切相关。Abstract: To improve the analysis and forecast of tropical cyclone (TC) wind circle, the asymmetric characteristics and causes of wind circle maximum radii of 55.6 km/h, 92.6 km/h and 118.5 km/h for TCs at their maximum intensity during 30 June 2015 to 31 December 2020 are studied using the TC data released by the National Meteorological Centre (NMC) and data extracted from ERA5 reanalysis. Statistical results show that the 55.6 km/h wind circle radius of TC is the most asymmetric, followed by the 92.6 km/h and 118.5 km/h wind circle radii. The 55.6 km/h, 92.6 km/h and 118.5 km/h wind circle maximum radii of TC with asymmetric distribution are mostly located at the north east (NE), southeast (SE) and northwest (NW) quadrants. The 55.6 km/h and 118.5 km/h wind circle maximum radii of the same TC are roughly located at the same quadrant. Single quadrant distribution TCs and multi-quadrant distribution TCs of 55.6 km/h wind circle are divided into four types according to quadrant distribution. By analyzing the generation season, surface wind and the causes of asymmetric distribution of TC with single quadrant distribution of 55.6 km/h wind circle, it is found that the generation of these four types of TC have obvious seasonal characteristics. The surface wind in different quadrants of TC shows asymmetric characteristic. The asymmetric distribution of wind circle is closely related to the asymmetry of potential height gradient in different quadrants caused by the interactions between TC and other weather systems, including the Western Pacific Subtropical High, the southwesterly air flow and surface cold high pressure, etc.
-
Key words:
- Tropical cyclone /
- Wind circle radius /
- Asymmetry /
- Weather system /
- Potential height gradient
-
图 8 第一类热带气旋合成的500 hPa (a)、850 hPa (b) 风场 (单位:m/s) 和位势高度场 (单位:dagpm),地面10 m风场 (单位:m/s) 和海平面气压场 (c) (单位:hPa) 及各象限内平均位势高度梯度的垂直变化 (d) (单位:dagpm) (a、b、c中黑色等值线为位势高度或海平面气压等值线,灰色区域为风速≥8 m/s)
Figure 8. Wind field (unit:m/s) and geopotential height field (unit:dagpm) at 500 hPa (a) and 850 hPa (b),surface wind (unit:m/s) and sea level pressure field (unit:hPa) (c) and vertical variation of average geopotential height gradient (unit:dagpm) in each quadrant (d) synthesized by the first type of TC (black lines in a,b and c are geopotential height and sea level pressure contours,respectively,the grey area indicates wind speed≥8 m/s)
表 1 热带气旋的7、10、12级风圈最大半径象限分布统计
Table 1. Statistics of TC with 55.6 km/h,92.6 km/h,118.5 km/h wind circle maximum radii in quadrant distribution
风级 对称分布
热带气旋
(个)非对称分布热带气旋(个) 总数
(个)单一象限
分布热带
气旋多象限分布热带气旋 NE、SE NE、NW SE、SW SE、NW SW、NW NE、SW NE、SE、
SWNE、SE、
NWNE、SW、
NWSE、SW、
NW7级 5 81 20 25 5 4 1 1 5 1 2 0 150 10级 40 20 14 12 5 2 2 0 3 1 0 1 100 12级 49 5 3 12 0 0 0 0 1 0 0 0 70 表 2 非对称分布热带气旋的7级、10级风圈最大半径在各象限的热带气旋频次及同一热带气旋 7级、10级风圈最大半径分布在相同象限的热带气旋频次和占比
Table 2. Frequency of asymmetric TCs with 55.6,92.6 km/h wind circle maximum radii in four quadrants,and frequency and proportion of individual asymmetric TCs with 55.6,92.6 km/h wind circle maximum radii in the same quadrant
多象限分布热带气旋(单位:次) 占比(C/A,单位:%) 单一象限分布热带气旋(单位:次) 占比(C/A,单位:%) A B C A B C NE 41 43 38 92.68 15 13 13 86.67 SE 25 29 21 84.00 7 5 5 71.43 SW 8 10 4 50.00 1 0 0 0.00 NW 17 18 14 82.35 4 2 2 50.00 -
毕鑫鑫,陈光华,周伟灿. 2018. 超强台风“天鹅”(2015)路径突变过程机理研究. 大气科学,42(1):227-238Bi X X,Chen G H,Zhou W C. 2018. A mechanism study on the sudden track change of super typhoon Goni (2015). Chinese J Atmos Sci,42(1):227-238 (in Chinese) 卜松,李英. 2020. 华东登陆热带气旋降水不同分布的对比分析. 大气科学,44(1):27-38Bu S,Li Y. 2020. Comparative analysis of precipitation distributions of tropical cyclones making landfall in East China. Chinese J Atmos Sci,44(1):27-38 (in Chinese) 曹楚,王忠东,郑峰. 2013. 台风“莫拉克”影响期间浙江大风成因分析. 气象科技,41(6):1109-1115 doi: 10.3969/j.issn.1671-6345.2013.06.026Cao C,Wang Z D,Zheng F. 2013. Causal analysis of strong wind weather in Zhejiang induced by typhoon Morakot. Meteor Sci Technol,41(6):1109-1115 (in Chinese) doi: 10.3969/j.issn.1671-6345.2013.06.026 陈联寿,徐祥德,解以扬等. 1997. 台风异常运动及其外区热力不稳定非对称结构的影响效应. 大气科学,21(1):83-90 doi: 10.3878/j.issn.1006-9895.1997.01.09Chen L S,Xu X D,Xie Y Y,et al. 1997. The effect of tropical cyclone asymmetric thermodynamic structure on its unusual motion. Sci Atmos Sinica,21(1):83-90 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.01.09 程正泉,陈联寿,李英. 2009. 登陆台风降水的大尺度环流诊断分析. 气象学报,67(5):840-850 doi: 10.3321/j.issn:0577-6619.2009.05.015Cheng Z Q,Chen L S,Li Y. 2009. Diagnostic analysis of large-scale circulation features associated with strong and weak landfalling typhoon precipitation events. Acta Meteor Sinica,67(5):840-850 (in Chinese) doi: 10.3321/j.issn:0577-6619.2009.05.015 端义宏,余晖,伍荣生. 2005. 热带气旋强度变化研究进展. 气象学报,63(5):636-645 doi: 10.3321/j.issn:0577-6619.2005.05.009Duan Y H,Yu H,Wu R S. 2005. Review of the research in the intensity change of tropical cyclone. Acta Meteor Sinica,63(5):636-645 (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.05.009 费建芳,刘磊,黄小刚等. 2013. 热带气旋眼墙非对称结构的研究综述. 气象学报,71(5):987-995 doi: 10.11676/qxxb2013.071Fei J F,Liu L,Huang X G,et al. 2013. Review of the studies of the asymmetric structure of the eyewall of a tropical cyclone. Acta Meteor Sinica,71(5):987-995 (in Chinese) doi: 10.11676/qxxb2013.071 胡娅敏,王永光,王娟怀等. 2017. 登陆华南台风强度的前兆信号分析及预测. 气象,43(10):1278-1286 doi: 10.7519/j.issn.10000526.2017.10.012Hu Y M,Wang Y G,Wang J H,et al. 2017. Precursor signal analysis and prediction for the landfall typhoon intensity over south China. Meteor Mon,43(10):1278-1286 (in Chinese) doi: 10.7519/j.issn.10000526.2017.10.012 黄先香,俞小鼎,炎利军等. 2019. 1804号台风“艾云尼”龙卷分析. 气象学报,77(4):645-661 doi: 10.11676/qxxb2019.055Huang X X,Yu X D,Yan L J,et al. 2019. An analysis on tornadoes in typhoon Ewiniar. Acta Meteor Sinica,77(4):645-661 (in Chinese) doi: 10.11676/qxxb2019.055 李英,陈联寿,王继志. 2004. 登陆热带气旋长久维持与迅速消亡的大尺度环流特征. 气象学报,60(2):167-179 doi: 10.3321/j.issn:0577-6619.2004.02.004Li Y,Chen L S,Wang J Z. 2004. The diagnostic analysis on the characteristics of large scale circulation corresponding to the sustaining and decaying of tropical cyclone after it's landfall. Acta Meteor Sinica,60(2):167-179 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.02.004 梁莉,崔晓鹏,王成鑫等. 2018. 我国登陆热带气旋引起的大陆地面风场分布. 大气科学,42(1):96-108Liang L,Cui X P,Wang C X,et al. 2018. Characteristic distribution of surface winds associated with landfalling tropical cyclones in mainland China. Chinese J Atmos Sci,42(1):96-108 (in Chinese) 覃丽,吴启树,曾小团等. 2019. 对流非对称台风“天鸽”(1713)近海急剧增强成因分析. 暴雨灾害,38(3):212-220Qin L,Wu Q S,Zeng X T,et al. 2019. Analysis on cause of rapid intensification of asymmetrical Typhoon Hato (1713) over the offshore of China. Torrential Rain Disaster,38(3):212-220 (in Chinese) 宋攀,钟中,齐琳琳等. 2017. 局地海表温度异常影响热带气旋路径的模拟研究. 气象科学,37(6):735-741Song P,Zhong Z,Qi L L,et al. 2017. A numerical study on the influence of abnormal local sea surface temperature on the track of tropical cyclone. Scientia Meteor Sinica,37(6):735-741 (in Chinese) 魏应植,汤达章,许健民等. 2007. 多普勒雷达探测“艾利”台风风场不对称结构. 应用气象学报,18(3):285-294 doi: 10.3969/j.issn.1001-7313.2007.03.004Wei Y Z,Tang D Z,Xu J M,et al. 2007. The asymmetric wind structure of Typhoon Aere detected by Doppler radar. J Appl Meteor Sci,18(3):285-294 (in Chinese) doi: 10.3969/j.issn.1001-7313.2007.03.004 吴天贻,周玉淑,王咏青等. 2021. 两次不同季风强度背景下的西行台风登陆过程降水特征对比分析. 大气科学,45(6):1173-1186Wu T Y,Zhou Y S,Wang Y Q,et al. 2021. Comparative analysis of precipitation characteristics of the westward typhoon cases "Bilis" and "Sepat" during landfall under different monsoon intensities. Chinese J Atmos Sci,45(6):1173-1186 (in Chinese) 向纯怡,吴立广,田伟等. 2016. 多平台热带气旋表面风场资料在台风结构分析中的应用. 气象,42(11):1315-1324 doi: 10.7519/j.issn.1000-0526.2016.11.003Xiang C Y,Wu L G,Tian W,et al. 2016. Applications of MTCSWA data to the characteristic analysis of tropical cyclone structure. Meteor Mon,42(11):1315-1324 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.11.003 邢蕊,徐晶,林瀚. 2020. 热带气旋过台湾后再次登陆的路径强度变化统计分析. 气象,46(4):517-527 doi: 10.7519/j.issn.1000-0526.2020.04.006Xing R,Xu J,Lin H. 2020. Statistical analysis of track and intensity variations of tropical cyclone landing mainland after passing through Taiwan. Meteor Mon,46(4):517-527 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.04.006 徐祥德,陈联寿,解以扬等. 1996. TCM-90现场科学试验台风FLO“β陀螺”“通风流”非对称动力结构特征. 气象学报,54(5):536-543 doi: 10.3321/j.issn:0577-6619.1996.05.003Xu X D,Chen L S,Xie Y Y,et al. 1996. The asymmetric and dynamic structure of the "β-top" diploe and "ventilation flow" of the target typhoon FLO during TCM-90 field experiment. Acta Meteor Sinica,54(5):536-543 (in Chinese) doi: 10.3321/j.issn:0577-6619.1996.05.003 杨玉华,雷小途. 2004. 我国登陆台风引起的大风分布特征的初步分析. 热带气象学报,20(6):633-642 doi: 10.3969/j.issn.1004-4965.2004.06.003Yang Y H,Lei X T. 2004. Statistics of strong wind distribution caused by landfall typhoon in China. J Trop Meteor,20(6):633-642 (in Chinese) doi: 10.3969/j.issn.1004-4965.2004.06.003 张定媛,田晓阳,贾朋群. 2018. 热带气旋预报性能及指标综合评述. 气象,44(12):1628-1634 doi: 10.7519/j.issn.10000526.2018.12.013Zhang D Y,Tian X Y,Jia P Q. 2018. Review on performance and index of tropical cyclone forecast. Meteor Mon,44(12):1628-1634 (in Chinese) doi: 10.7519/j.issn.10000526.2018.12.013 赵小平,朱晶晶,樊晶等. 2016. 强台风海鸥登陆期间近地层风特性分析. 气象,42(4):415-423 doi: 10.7519/j.issn.1000-0526.2016.04.004Zhao X P,Zhu J J,Fan J,et al. 2016. Analysis on wind characteristics in surface layer during landfall of typhoon Kalmaegi. Meteor Mon,42(4):415-423 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.04.004 Chan K T F,Chan J C L. 2012. Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon Wea Rev,140(3):811-824 doi: 10.1175/MWR-D-10-05062.1 Chen L S,Luo Z X. 1998. Numerical study on functions affecting tropical cyclone structure and motion. J Meteor Res,12(4):504-512 Gray W M. 1979. Recent Advances in Tropical Cyclone Research from Rawinsonde Composite Analysis. WMO Programme on Research in Tropical Meteorology. Colorado:WMO,407pp Knaff J A,Slocum C J,Musgrave K D,et al. 2016. Using routinely available information to estimate tropical cyclone wind structure. Mon Wea Rev,144(4):1233-1247 doi: 10.1175/MWR-D-15-0267.1 Lee W C,Marks F D. 2000. Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part Ⅱ:The GBVTD-simplex center finding algorithm. Mon Wea Rev,128(6):1925-1936 doi: 10.1175/1520-0493(2000)128<1925:TCKSRF>2.0.CO;2 Mueller K J,Demaria M,Knaff J,et al. 2006. Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea Forecasting,21(6):990-1005 doi: 10.1175/WAF955.1 Song J J,Klotzbach P J. 2016. Wind structure discrepancies between two best track datasets for western North Pacific tropical cyclones. Mon Wea Rev,144(12):4533-4551 doi: 10.1175/MWR-D-16-0163.1 -