Improvement of the three-dimensional stochastic cloud-to-ground lightning model and numerical simulation of multiple upward leaders
-
摘要: 为了探讨地闪连接过程中多上行先导的起始与发展,考虑到光学观测事实及雷暴电场环境,本研究在已有多上行先导三维随机参数化方案的基础上,植入背景电场模块并改进上、下行先导模块。基于新模型开展大量敏感性试验,结果如下:(1)新模型模拟的下行先导形态多样、分支数大幅度减少,能更好地再现多样的地闪连接过程。(2)在孤立建筑物情况下,上行先导长度、闪击距离以及触发多上行先导的次数与建筑物高度成正相关。(3)随着建筑物增高,同一次地闪中首个始发的上行先导与后续始发的上行先导间的起始时间差整体呈现上升趋势。初步研究表明:建筑物高度对触发多上行先导的影响显著。此外,受到建筑物高度及正、负先导发展情况的影响,低矮建筑物触发的多上行先导几乎同时起始,而高建筑物上允许首个始发的上行先导优先发展一定长度后再始发后续上行先导。Abstract: To explore the initiation and propagation of upward leader (UL) in the cloud-to-ground lightning attachment process, on the basis of the existing multiple upward leaders (MULs) three-dimensional model and considering optical observations and environmental electric field, the background electric field module is implanted and the UL and downward leader (DL) modules are improved. Sensitivity experiments are then carried out using the improved model. The results are as follows: (1) The new model can simulate a variety of DL, and the number of its branches is greatly reduced. Also, the model can well reproduce various cloud-to-ground lightning attachment processes. (2) Statistical analysis of simulation results shows the UL length, striking distance and the frequency of MULs originating from a structure are positively correlated with the structure height. (3) In addition, as the height of the building increases, the initial time difference between the MULs that start successively in the same lightning attachment process shows an overall upward trend. Preliminary research results indicate that the structure height has a significant impact on the initiation of MULs. And due to the influence of the structure height and the positive and negative leaders, MULs triggered by a low structure start almost at the same time, while on the tall structure, the first UL can propagate a certain distance before initiating subsequent UL.
-
Key words:
- Numerical simulation /
- Multiple upward leaders /
- Structure height
-
图 3 单建筑物中地闪情况模拟 (闪电击中建筑物:a. 建筑物始发单个上行先导,下行先导竖直向下发展并伴随两个明显主分支;b. 建筑物始发多个上行先导,下行先导的一个主分支倾斜向下发展。闪电击地:c. 建筑物始发单个上行先导,闪电竖直向下发展;d. 建筑物始发多个上行先导,闪电竖直向下发展)
Figure 3. Simulation of cloud-to-ground lightning in a single structure (Lightning strikes the structure: a. a single UL initiates from the structure,and the DL with two main branches goes straight down;b. MULs initiate from the structure,and one of the DL branches slopes down. Lightning strikes the ground: c. a single UL initiates from the structure,and the lightning channel goes straight down;d. MULs initiate from the structure,and the lightning channel goes straight down)
图 4 不同建筑物高度下触发上行先导频次 (蓝色柱表示触发单个上行先导次数,橙色柱表示触发多个上行先导次数,绿色柱表示触发上行先导总次数)
Figure 4. Frequencies of initiating UL from structures with different heights (blue columns represent the frequency of initiating only one UL,orange columns represent the frequency of initiating MULs,and green columns represent the total frequency of initiating UL)
图 7 与首个始发和后续始发的上行先导间起始时间差相关的个例 (a. 建筑物高200 m,c. 建筑物高600 m,b、d分别为a、c所示个例对应的建筑物顶角电场强度随下行先导延伸的变化情况,NO1—NO4分别表示建筑物的4个顶角)
Figure 7. Two cases related to initial time difference between FUL and SUL (a. 200 m,c. 600 m,b,d are the electric field changes of top corners with the DL steps corresponding to the cases shown in a and c respectively,NO1—NO4 are the four top corners of the structure)
-
郭秀峰,谭涌波,郭凤霞等. 2013. 建筑物尖端对大气电场畸变影响的数值计算. 应用气象学报,24(2):189-196 doi: 10.3969/j.issn.1001-7313.2013.02.007Guo X F,Tan Y B,Guo F X,et al. 2013. Numerical simulation of effects of building tip on atmospheric electric field distortion. J Appl Meteor Sci,24(2):189-196 (in Chinese) doi: 10.3969/j.issn.1001-7313.2013.02.007 吕伟涛,陈绿文,马颖等. 2020. 广州高建筑物雷电观测与研究10年进展. 应用气象学报,31(2):129-145 doi: 10.11898/1001-7313.20200201Lü W T,Chen L W,Ma Y,et al. 2020. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci,31(2):129-145 (in Chinese) doi: 10.11898/1001-7313.20200201 齐奇,吕伟涛,武斌等. 2020. 广州两座高建筑物上闪击距离的二维光学观测. 应用气象学报,31(2):156-164 doi: 10.11898/1001-7313.20200203Qi Q,Lü W T,Wu B,et al. 2020. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci,31(2):156-164 (in Chinese) doi: 10.11898/1001-7313.20200203 郄秀书,张其林,袁铁等. 2013. 雷电物理学(地学卷). 北京:科学出版社,46ppQie X S,Zhang Q L,Yuan T,et al. 2013. Lightning Physics (Earth). Beijing:Science Press,46pp (in Chinese) 任晓毓,张义军,吕伟涛等. 2011. 闪电先导随机模式的建立与应用. 应用气象学报,22(2):194-202 doi: 10.3969/j.issn.1001-7313.2011.02.008Ren X Y,Zhang Y J,Lü W T,et al. 2011. Establishment and application of random lightning leader model. J Appl Meteor Sci,22(2):194-202 (in Chinese) doi: 10.3969/j.issn.1001-7313.2011.02.008 谭涌波,周博文,郭秀峰等. 2015. 建筑物高度对上行闪电触发以及传播影响的数值模拟. 气象学报,73(3):546-556 doi: 10.11676/qxxb2015.027Tan Y B,Zhou B W,Guo X F,et al. 2015. A numerical simulation of the effects of building height on single upward lightning trigger and propagation. Acta Meteor Sinica,73(3):546-556 (in Chinese) doi: 10.11676/qxxb2015.027 吴姗姗,吕伟涛,齐奇等. 2019. 基于光学资料的广州塔附近下行地闪特征. 应用气象学报,30(2):203-210 doi: 10.11898/1001-7313.20190207Wu S S,Lü W T,Qi Q,et al. 2019. Characteristics of downward cloud-to-ground lightning flashes around canton tower based on optical observations. J Appl Meteor Sci,30(2):203-210 (in Chinese) doi: 10.11898/1001-7313.20190207 余骏皓,谭涌波,郑天雪等. 2020. 建筑物群中多上行先导三维模型的建立. 应用气象学报,31(6):740-748 doi: 10.11898/1001-7313.20200609Yu J H,Tan Y B,Zheng T X,et al. 2020. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci,31(6):740-748 (in Chinese) doi: 10.11898/1001-7313.20200609 Becerra M,Cooray V. 2008. On the velocity of positive connecting leaders associated with negative downward lightning leaders. Geophys Res Lett,35(2):L02801 Biagi C J,Uman M A,Gopalakrishnan J,et al. 2011. Determination of the electric field intensity and space charge density versus height prior to triggered lightning. J Geophys Res,116(D15):D15201 doi: 10.1029/2011JD015710 Chauzy S,Médale J C,Prieur S,et al. 1991. Multilevel measurement of the electric field underneath a thundercloud. 1:A new system and the associated data processing. J Geophys Res,96(D12):22319-22326 doi: 10.1029/91JD02031 Cummins K L,Krider E P,Olbinski M,et al. 2018. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders. Atmos Res,202:169-174 doi: 10.1016/j.atmosres.2017.11.007 Dellera L,Garbagnati E. 1990. Lightning stroke simulation by means of the leader progression model. Ⅰ:Description of the model and evaluation of exposure of free-standing structures. IEEE Trans Power Delivery,5(4):2009-2022 doi: 10.1109/61.103696 Gao Y,Lu W T,Ma Y,et al. 2014. Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou. Atmos Res,149:193-203 doi: 10.1016/j.atmosres.2014.06.008 Griffiths R F,Phelps C T. 1976. The effects of air pressure and water vapour content on the propagation of positive corona streamers,and their implications to lightning initiation. Quart J Roy Meteor Soc,102(432):419-426 doi: 10.1002/qj.49710243211 Helsdon Jr J H,Farley R D. 1987. A numerical modeling study of a Montana thunderstorm. 2:Model results versus observations involving electrical aspects. J Geophys Res,92(D5):5661-5675 doi: 10.1029/JD092iD05p05661 Helsdon Jr J H,Wu G,Farley R D. 1992. An intracloud lightning parameterization scheme for a storm electrification model. J Geophys Res Atmos,97(D5):5865-5884 doi: 10.1029/92JD00077 Idone V P. 1990. Length bounds for connecting discharges in triggered lightning subsequent strokes. J Geophys Res Atmos,95(D12):20409-20416 doi: 10.1029/JD095iD12p20409 Iudin D I,Rakov V A,Mareev E A,et al. 2017. Advanced numerical model of lightning development:Application to studying the role of LPCR in determining lightning type. J Geophys Res Atmos,122(12):6416-6430 doi: 10.1002/2016JD026261 Jiang R J,Lyu W T,Wu B,et al. 2020. Simulation of cloud-to-ground lightning strikes to structures based on an improved stochastic lightning model. J Atmos Sol Terr Phys,203:105274 doi: 10.1016/j.jastp.2020.105274 Lalande P,Mazur V. 2012. A physical model of branching in upward leaders. Aerospace Lab,5:1-7 Lu W T,Chen L W,Zhang Y,et al. 2012. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J Geophys Res-Atmos,117(D19):D19211 Lu W T,Gao Y,Chen L W,et al. 2015. Three-dimensional propagation characteristics of the leaders in the attachment process of a downward negative lightning flash. J Atmos Sol Terr Phys,136:23-30 doi: 10.1016/j.jastp.2015.07.011 MacGorman D R,Straka J M,Ziegler C L. 2001. A lightning parameterization for numerical cloud models. J Appl Meteor,40(3):459-478 doi: 10.1175/1520-0450(2001)040<0459:ALPFNC>2.0.CO;2 Mansell E R,MacGorman D R,Ziegler C L,et al. 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J Geophys Res-Atmos,107(D9):4075 McEachron K B. 1939. Lightning to the empire state building. J Franklin Inst,227(2):149-217 doi: 10.1016/S0016-0032(39)90397-2 Qi Q,Lu W T,Ma Y,et al. 2016. High-speed video observations of the fine structure of a natural negative stepped leader at close distance. Atmos Res,178-179:260-267 doi: 10.1016/j.atmosres.2016.03.027 Qi Q,Lyu W T,Ma Y,et al. 2019. High-speed video observations of natural lightning attachment process with framing rates up to half a million frames per second. Geophys Res Lett,46(21):12580-12587 doi: 10.1029/2019GL085072 Rakov V A,Uman M A. 2003. Lightning:Physics and Effects. Cambridge:Cambridge University Press,137-143 Rakov V A,Tran M D. 2019. The breakthrough phase of lightning attachment process:From collision of opposite-polarity streamers to hot-channel connection. Electr Power Syst Res,173:122-134 doi: 10.1016/j.jpgr.2019.03.018 Saba M M F,Paiva A R,Schumann C,et al. 2017. Lightning attachment process to common buildings. Geophys Res Lett,44(9):4368-4375 doi: 10.1002/2017GL072796 Tan Y B,Tao S C,Zhu B Y. 2006. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys Res Lett,33(9):L09809 Tan Y B,Zheng T X,Shi Z. 2019. Improved lightning model:Application to discuss the characteristics of upward lightning. Atmos Res,217:63-72 doi: 10.1016/j.atmosres.2018.10.011 Tao S C,Tan Y B,Zhu B Y,et al. 2009. Fine-resolution simulation of cloud-to-ground lightning and thundercloud charge transfer. Atmos Res,91(2-4):360-370 doi: 10.1016/j.atmosres.2008.05.012 Warner T A. 2012. Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos Res,117:45-54 doi: 10.1016/j.atmosres.2011.07.004 Williams E R,Cooke C M,Wright K A. 1985. Electrical discharge propagation in and around space charge clouds. J Geophys Res -Atmos,90(D4):6059-6070 doi: 10.1029/JD090iD04p06059 Yahyaabadi M,Vahidi B. 2012. Estimation of shielding failure number of transmission lines for different trace configurations using leader progression analysis. Int J Electr Power Energy Syst,38(1):27-32 doi: 10.1016/j.ijepes.2011.12.017 Yokoyama S,Miyake K,Suzuki T,et al. 1990. Winter lightning on Japan sea coast-Development of measuring system on progressing feature of lightning discharge. IEEE Trans Power Delivery,5(3):1418-1425 doi: 10.1109/61.57984 -