留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北地区秋冬季气溶胶污染与不同类型降水的关系

肖之盛 缪育聪 朱少斌 于扬 杜晓惠 车慧正

肖之盛,缪育聪,朱少斌,于扬,杜晓惠,车慧正. 2022. 华北地区秋冬季气溶胶污染与不同类型降水的关系. 气象学报,80(6):986-998 doi: 10.11676/qxxb2022.066
引用本文: 肖之盛,缪育聪,朱少斌,于扬,杜晓惠,车慧正. 2022. 华北地区秋冬季气溶胶污染与不同类型降水的关系. 气象学报,80(6):986-998 doi: 10.11676/qxxb2022.066
Xiao Zhisheng, Miao Yucong, Zhu Shaobin, Yu Yang, Du Xiaohui, Che Huizheng. 2022. The relationship between aerosol pollution and different precipitation types in autumn and winter in North China. Acta Meteorologica Sinica, 80(6):986-998 doi: 10.11676/qxxb2022.066
Citation: Xiao Zhisheng, Miao Yucong, Zhu Shaobin, Yu Yang, Du Xiaohui, Che Huizheng. 2022. The relationship between aerosol pollution and different precipitation types in autumn and winter in North China. Acta Meteorologica Sinica, 80(6):986-998 doi: 10.11676/qxxb2022.066

华北地区秋冬季气溶胶污染与不同类型降水的关系

doi: 10.11676/qxxb2022.066
基金项目: 国家自然科学基金项目(42030608)、国家重点研发计划项目(2017YFA0603501)
详细信息
    作者简介:

    肖之盛,主要从事气溶胶-云-降水相互作用研究。E-mail:xiaozs01@163.com

    通讯作者:

    车慧正,主要从事气溶胶光学辐射特性及其气候效应研究。E-mail:chehz@cma.gov.cn

  • 中图分类号: P426.6

The relationship between aerosol pollution and different precipitation types in autumn and winter in North China

  • 摘要: 气溶胶对降水的影响具有很大的不确定性,正确理解和认识气溶胶对不同类型降水的影响对提高天气预报的准确度和全球气候变化具有重要意义。利用GPM-DPR观测资料和MERRA-2再分析资料分析了气溶胶污染与华北地区2014—2020年秋、冬季对流云降水和层状云降水的关系。结果表明:与清洁状况相比,气溶胶污染状况下对流云降水的降水强度有所增强,雨顶高度更高。在污染状态下对流云降水具有粒径小但数浓度高的降水粒子,潜热加热率更高。气溶胶污染与层状云降水的降水强度、雨顶高度等宏观特征不存在明显相关。层状云降水相比对流云降水更容易受到大气水汽条件和垂直上升运动的影响。因此,在气象条件主导降水的情况下,气溶胶污染对华北地区层状云降水的影响很难通过GPM-DPR和MERRA-2数据观测到。

     

  • 图 1  研究区域地形 (黑色虚线框;色阶:地形高度,单位:m)

    Figure 1.  Topography in the study area (black dashed line box;shaded:terrain height,unit:m)

    图 2  层状云降水和对流云降水平均降水强度随气溶胶光学厚度变化及其相关关系 (误差棒表示标准差,**表示通过99%显著性t检验)

    Figure 2.  Trends of the mean rain rates of stratiform and convective precipitation with AOD and the correlation coefficients (the error bars represent standard deviations,** means the value passing the 99% confidence level t-test)

    图 3  层状云降水 (a) 和对流云降水 (b) 降水强度与气溶胶光学厚度分格点相关系数频率 (柱) 和累积频率 (曲线) (绿实线为0,红虚线为50%累积频率值,左侧坐标轴为频率,右侧坐标轴为累积频率)

    Figure 3.  Cumulative distribution function (curve) and frequency (bar) of grid-to-grid correlation coefficient of rain rate with AOD for (a) stratiform precipitation and (b) convective precipitation (green solid line is 0,red dotted line is 50% of cumulative frequency,the left axis is the frequency and the right axis is the cumulative frequency)

    图 4  层状云降水 (a) 和对流云降水 (b) 平均雷达反射率频率 (色阶,单位:%) 及 (c) 反射率最大值 (虚线,单位:dBz) 和平均值 (实线,单位:dBz) 随气溶胶光学厚度的变化 (c中蓝色代表层状云降水,红色代表对流云降水,误差棒表示标准差)

    Figure 4.  Mean radar reflectivity frequencies (shaded,unit:%) of stratiform precipitation (a) and convective precipitation (b) and their (c) maximum (dashed line,unit:dBz) and mean values (solid line,unit:dBz) versus AOD (blue lines in c represent stratiform precipitation,red lines represent convective precipitation,and the error bars indicate standard deviations)

    图 5  层状云降水和对流云降水在污染和清洁状态下 (a) 雨顶高度 (H) 和 (b) 降水强度 (R) 差异的频率 (柱) 和累积频率 (曲线)(左侧坐标轴为频率,右侧坐标轴为累积频率)

    Figure 5.  Cumulative distribution function (curve) and frequency (bar) of the differences in (a) rain top height (H) and (b) rain rate (R) of stratiform and convective precipitation between polluted and clean states (polluted minus clean)(the left axis is the frequency and the right axis is the cumulative frequency)

    图 6  层状云降水 (a、b) 和对流云降水 (c、d) 在污染和清洁状态下降水粒子粒径 (等值线,单位:mm) 和数浓度 (色阶,单位:m−3mm−1) 参数差异的垂直剖面 (污染减清洁,a、c为纬向平均,b、d为经向平均)

    Figure 6.  Vertical profiles of differences in particle size (contour,unit:mm) and number concentration (shaded,unit:m−3mm−1) of stratiform precipitation (a,b) and convective precipitation (c,d) in polluted and clean states (polluted minus clean,a and c show latitudinal averages,b and d are for longitudinal averages)

    Continued

    图 7  同图6,但为潜热加热率 (单位:K/h)

    Figure 7.  Same as Fig. 6 but for latent heating rate (unit:K/h)

    图 8  层状云降水 (a、b) 和对流云降水 (c、d) 的降水强度与800 hPa相对湿度 (a、c) 及可降水量 (b、d) 的相关关系 (*表示通过95%显著性t检验,**表示通过99%显著性t检验)

    Figure 8.  Correlation of rain rate with RH at 800 hPa (a,c) and precipitable water vapor (PWV) (b,d) for stratiform precipitation (a,b) and convective precipitation (c,d) (* means the value passing the 95% confidence level t-test,** means the value passing the 99% confidence level t-test)

    图 9  同图8,但为800 hPa纬向风 (a、c) 和经向风 (b、d)

    Figure 9.  Same as Fig. 8 but for the zonal wind U (a,c) and meridional wind V (b,d) at 800 hPa

    图 10  同图8,但为985 hPa垂直速度 (a、c) 和对流层下部稳定性 (b、d)

    Figure 10.  Same as Fig. 8 but for vertical velocity W at 985 hPa (a,c) and lower tropospheric stability (LTS) (b,d)

  • 陈爱军,孔宇,陆大春. 2018. 应用CGDPA评估中国大陆地区IMERG的降水估计精度. 大气科学学报,41(6):797-806

    Chen A J,Kong Y,Lu D C,et al. 2018. Evaluation of the precipitation estimation accuracy of IMERG over mainland China with CGDPA. Trans Atmos Sci,41(6):797-806 (in Chinese)
    陈卫东,付丹红,苗世光等. 2015. 北京及周边城市气溶胶污染对城市降水的影响. 科学通报,60(22):2124-2135 doi: 10.1360/N972015-00217

    Chen W D,Fu D H,Miao S G,et al. 2015. Impacts of aerosols from Beijing and the surrounding areas on urban precipitation. Chinese Sci Bull,60(22):2124-2135 (in Chinese) doi: 10.1360/N972015-00217
    陈卫东,付丹红,苗世光等. 2018. 气溶胶污染对夏季降水精细数值预报的影响研究. 地球物理学进展,33(1):10-18 doi: 10.6038/pg2018AA0663

    Chen W D,Fu D H,Miao S G,et al. 2018. Impacts of aerosols on the fine-scale numerical forecasting of summer precipitation. Prog Geophys,33(1):10-18 (in Chinese) doi: 10.6038/pg2018AA0663
    蒋银丰,寇蕾蕾,陈爱军等. 2020. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报,31(5):608-619 doi: 10.11898/1001-7313.20200508

    Jiang Y F,Kou L L,Chen A J,et al. 2020. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci,31(5):608-619 (in Chinese) doi: 10.11898/1001-7313.20200508
    李占清. 2020. 气溶胶对中国天气、气候和环境影响综述. 大气科学学报,43(1):76-92 doi: 10.13878/j.cnki.dqkxxb.20200115005

    Li Z Q. 2020. Impact of aerosols on the weather,climate and environment of China:An overview. Trans Atmos Sci,43(1):76-92 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20200115005
    邱粲,王栋成,李娟等. 2017. 风廓线雷达垂直速度与地面降雨关系研究:以济南为例. 海洋气象学报,37(4):91-100

    Qiu C,Wang D C,Li J,et al. 2017. Study on the relationship between vertical velocity of wind profiler and rainfall:A case in Jinan. J Mar Meteor,37(4):91-100 (in Chinese)
    谭楚岩,邓洁淳,吴雨飞等. 2020. 全球和亚洲人为气溶胶影响东亚气候的数值模拟研究. 气象科学,40(4):438-448 doi: 10.3969/2019jms.0038

    Tan C Y,Deng J C,Wu Y F,et al. 2020. Numerical study of east Asian climate responses to global and Asian anthropogenic aerosols. Scientia Meteor Sinica,40(4):438-448 (in Chinese) doi: 10.3969/2019jms.0038
    王东东,朱彬,江志红等. 2017. 人为气溶胶对中国东部冬季风影响的模拟研究. 大气科学学报,40(4):541-552 doi: 10.13878/j.cnki.dqkxxb.20160525001

    Wang D D,Zhu B,Jiang Z H,et al. 2017. A modeling study of effects of anthropogenic aerosol on East Asian winter monsoon over Eastern China. Trans Atmos Sci,40(4):541-552 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160525001
    王继志,李多,杨元琴等. 2011. 中国北方地区冬季雨雪年度变化与大气气溶胶分布特征研究. 气象与环境学报,27(6):66-71 doi: 10.3969/j.issn.1673-503X.2011.06.011

    Wang J Z,Li D,Yang Y Q,et al. 2011. Characteristics of annual variations of winter rain/snow and atmospheric aerosol distributions in the north of China. J Meteor Environ,27(6):66-71 (in Chinese) doi: 10.3969/j.issn.1673-503X.2011.06.011
    杨慧玲,肖辉,洪延超. 2011. 气溶胶对云宏微观特性和降水影响的研究进展. 气候与环境研究,16(4):525-542 doi: 10.3878/j.issn.1006-9585.2011.04.13

    Yang H L,Xiao H,Hong Y C. 2011. Progress in impacts of aerosol on cloud properties and precipitation. Climatic Environ Res,16(4):525-542 (in Chinese) doi: 10.3878/j.issn.1006-9585.2011.04.13
    Chakraborty S,Fu R,Rosenfeld D,et al. 2018. The influence of aerosols and meteorological conditions on the total rain volume of the mesoscale convective systems over tropical continents. Geophys Res Lett,45(23):13099-13106
    Chase R J,Nesbitt S W,McFarquhar G M. 2020. Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere,11(6):619 doi: 10.3390/atmos11060619
    Che H Z,Gui K,Xia X G,et al. 2019. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos Chem Phys,19(16):10497-10523 doi: 10.5194/acp-19-10497-2019
    Chen T M,Li Z Q,Kahn R A,et al. 2021. Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmos Chem Phys,21(8):6199-6220 doi: 10.5194/acp-21-6199-2021
    Clavner M,Cotton W R,van den Heever S C,et al. 2018. The response of a simulated mesoscale convective system to increased aerosol pollution:Part Ⅰ:Precipitation intensity,distribution,and efficiency. Atmos Res,199:193-208 doi: 10.1016/j.atmosres.2017.08.010
    Dagan G,Koren I,Altaratz O. 2015. Competition between core and periphery-based processes in warm convective clouds:From invigoration to suppression. Atmos Chem Phys,15(5):2749-2760 doi: 10.5194/acp-15-2749-2015
    Fan J W,Yuan T L,Comstock J M,et al. 2009. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res:Atmos,114(D22):D22206 doi: 10.1029/2009JD012352
    Fan J W,Leung L R,Li Z Q,et al. 2012. Aerosol impacts on clouds and precipitation in Eastern China:Results from bin and bulk microphysics. J Geophys Res:Atmos,117(D16):D00K36
    Fan J W,Wang Y,Rosenfeld D,et al. 2016. Review of aerosol-cloud interactions:Mechanisms,significance,and challenges. J Atmos Sci,73(11):4221-4252 doi: 10.1175/JAS-D-16-0037.1
    Gelaro R,McCarty W,Suárez M J,et al. 2017. The modern-era retrospective analysis for research and applications,version 2 (MERRA-2). J Climate,30(14):5419-5454 doi: 10.1175/JCLI-D-16-0758.1
    Guo J P,Deng M J,Fan J W,et al. 2014. Precipitation and air pollution at mountain and plain stations in northern China:Insights gained from observations and modeling. J Geophys Res:Atmos,119(8):4793-4807 doi: 10.1002/2013JD021161
    Guo J P,Liu H,Li Z Q,et al. 2018. Aerosol-induced changes in the vertical structure of precipitation:A perspective of TRMM precipitation radar. Atmos Chem Phys,18(18):13329-13343 doi: 10.5194/acp-18-13329-2018
    Guo X L,Fu D H,Guo X,et al. 2014. A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos Res,142:142-157 doi: 10.1016/j.atmosres.2013.10.006
    Hou A Y,Kakar R K,Neeck S,et al. 2014. The global precipitation measurement mission. Bull Amer Meteor Soc,95(5):701-722 doi: 10.1175/BAMS-D-13-00164.1
    Huo F,Jiang Z H,Ma H Y,et al. 2021. Reduction in autumn precipitation over Southwest China by anthropogenic aerosol emissions from Eastern China. Atmos Res,257:105627 doi: 10.1016/j.atmosres.2021.105627
    Iguchi T,Rutledge S A,Tao W K,et al. 2020. Impacts of aerosol and environmental conditions on maritime and continental deep convective systems using a bin microphysical model. J Geophys Res:Atmos,125(12):e2019JD030952
    Jiang M J,Li Z Q,Wan B C,et al. 2016. Impact of aerosols on precipitation from deep convective clouds in Eastern China. J Geophys Res:Atmos,121(16):9607-9620 doi: 10.1002/2015JD024246
    Koren I,Remer L A,Altaratz O,et al. 2010. Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos Chem Phys,10(10):5001-5010 doi: 10.5194/acp-10-5001-2010
    Lee S S,Donner L J,Phillips V T J,et al. 2008. The dependence of aerosol effects on clouds and precipitation on cloud-system organization,shear and stability. J Geophys Res:Atmos,113(D16):D16202 doi: 10.1029/2007JD009224
    Li Z Q,Wang Y,Guo J P,et al. 2019. East Asian study of tropospheric aerosols and their impact on regional clouds,precipitation,and climate (EAST-AIRCPC). J Geophys Res:Atmos,124(23):13026-13054 doi: 10.1029/2019JD030758
    Rosenfeld D,Lohmann U,Raga G B,et al. 2008. Flood or drought:How do aerosols affect precipitation?. Science,321(5894):1309-1313 doi: 10.1126/science.1160606
    Rosenfeld D,Andreae M O,Asmi A,et al. 2014a. Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys,52(4):750-808 doi: 10.1002/2013RG000441
    Rosenfeld D,Sherwood S,Wood R,et al. 2014b. Climate effects of aerosol-cloud interactions. Science,343(6169):379-380 doi: 10.1126/science.1247490
    Storer R L,van den Heever S C,Stephens G L. 2010. Modeling aerosol impacts on convective storms in different environments. J Atmos Sci,67(12):3904-3915 doi: 10.1175/2010JAS3363.1
    Sun E W,Xu X F,Che H Z,et al. 2019. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J Atmos Sol Terr Phys,186:8-19 doi: 10.1016/j.jastp.2019.01.019
    Sun Y,Zhao C F. 2020. Influence of Saharan dust on the large-scale meteorological environment for development of tropical cyclone over north Atlantic Ocean Basin. J Geophys Res:Atmos,125(23):e2020JD033454
    Tao W K,Chen J P,Li Z Q,et al. 2012. Impact of aerosols on convective clouds and precipitation. Rev Geophys,50(2):RG2001
    Wang C E. 2013. Impact of anthropogenic absorbing aerosols on clouds and precipitation:A review of recent progresses. Atmos Res,122:237-249 doi: 10.1016/j.atmosres.2012.11.005
    Xu X D,Guo X L,Zhao T L,et al. 2017. Are precipitation anomalies associated with aerosol variations over Eastern China?. Atmos Chem Phys,17(12):8011-8019 doi: 10.5194/acp-17-8011-2017
    Yang Y,Fan J W,Leung L R,et al. 2016. Mechanisms contributing to suppressed precipitation in Mt. Hua of central China. Part Ⅰ:Mountain valley circulation. J Atmos Sci,73(3):1351-1366 doi: 10.1175/JAS-D-15-0233.1
    Yang Y K,Zhao C F,Wang Y,et al. 2021. Multi-source data based investigation of aerosol-cloud interaction over the North China plain and north of the Yangtze Plain. J Geophys Res:Atmos,126(19):e2021JD035609
    Zhang A Q,Fu Y F. 2018a. Life cycle effects on the vertical structure of precipitation in East China measured by Himawari-8 and GPM DPR. Mon Wea Rev,146(7):2183-2199 doi: 10.1175/MWR-D-18-0085.1
    Zhang A Q,Fu Y F,Chen Y L,et al. 2018b. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas:GPM observations. Atmos Res,202:10-22 doi: 10.1016/j.atmosres.2017.11.001
    Zhao C F,Lin Y L,Wu F,et al. 2018. Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys Res Lett,45(16):8604-8611 doi: 10.1029/2018GL079427
    Zhao C F,Yang Y K,Fan H,et al. 2020. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. Natl Sci Rev,7(3):492-495 doi: 10.1093/nsr/nwz184
    Zhou R J,Yan T Y,Yang S P,et al. 2022. Characteristics of clouds,precipitation,and latent heat in midlatitude frontal system mixed with dust storm from GPM satellite observations and WRF simulations. JUSTC,52(2):3 doi: 10.52396/JUSTC-2021-0238
    Zhou S Y,Yang J,Wang W C,et al. 2018. Shift of daily rainfall peaks over the Beijing-Tianjin-Hebei region:An indication of pollutant effects?. Int J Climatol,38(13):5010-5019 doi: 10.1002/joc.5700
    Zhou S Y,Yang J,Wang W C,et al. 2020. An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing-Tianjin-Hebei. Atmos Chem Phys,20(9):5211-5229 doi: 10.5194/acp-20-5211-2020
  • 加载中
图(11)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  94
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-06-30

目录

    /

    返回文章
    返回