The relationship between aerosol pollution and different precipitation types in autumn and winter in North China
-
摘要: 气溶胶对降水的影响具有很大的不确定性,正确理解和认识气溶胶对不同类型降水的影响对提高天气预报的准确度和全球气候变化具有重要意义。利用GPM-DPR观测资料和MERRA-2再分析资料分析了气溶胶污染与华北地区2014—2020年秋、冬季对流云降水和层状云降水的关系。结果表明:与清洁状况相比,气溶胶污染状况下对流云降水的降水强度有所增强,雨顶高度更高。在污染状态下对流云降水具有粒径小但数浓度高的降水粒子,潜热加热率更高。气溶胶污染与层状云降水的降水强度、雨顶高度等宏观特征不存在明显相关。层状云降水相比对流云降水更容易受到大气水汽条件和垂直上升运动的影响。因此,在气象条件主导降水的情况下,气溶胶污染对华北地区层状云降水的影响很难通过GPM-DPR和MERRA-2数据观测到。Abstract: The influence of aerosols on precipitation is largely uncertain, and a correct understanding of the influence of aerosols on different types of precipitation is important for improving the accuracy of weather forecasting and global climate change. The relationship between aerosol pollution and convective precipitation as well as stratiform precipitation in North China in autumn and winter 2014—2020 is analyzed using the GPM-DPR satellite data and MERRA-2 reanalysis data. The results indicate that convective precipitation in the aerosol-polluted condition shows an enhanced rain rate and a higher rain top height compared to that in the clean condition. Convective precipitation in the polluted condition has precipitation particles of smaller size but larger number and higher latent heating rate. There is no significant correlation between aerosol pollution and macroscopic characteristics of stratiform precipitation such as rain rate and rain top height. Stratiform precipitation is more susceptible to atmospheric water vapor condition and upward motion than convective precipitation. Therefore, the effects of aerosol pollution on stratiform precipitation in North China are difficult to be found by GPM-DPR data and MERRA-2 data when the meteorological condition dominates precipitation.
-
Key words:
- Aerosol /
- Stratiform and convective precipitation /
- Autumn and winter /
- North China
-
图 3 层状云降水 (a) 和对流云降水 (b) 降水强度与气溶胶光学厚度分格点相关系数频率 (柱) 和累积频率 (曲线) (绿实线为0,红虚线为50%累积频率值,左侧坐标轴为频率,右侧坐标轴为累积频率)
Figure 3. Cumulative distribution function (curve) and frequency (bar) of grid-to-grid correlation coefficient of rain rate with AOD for (a) stratiform precipitation and (b) convective precipitation (green solid line is 0,red dotted line is 50% of cumulative frequency,the left axis is the frequency and the right axis is the cumulative frequency)
图 4 层状云降水 (a) 和对流云降水 (b) 平均雷达反射率频率 (色阶,单位:%) 及 (c) 反射率最大值 (虚线,单位:dBz) 和平均值 (实线,单位:dBz) 随气溶胶光学厚度的变化 (c中蓝色代表层状云降水,红色代表对流云降水,误差棒表示标准差)
Figure 4. Mean radar reflectivity frequencies (shaded,unit:%) of stratiform precipitation (a) and convective precipitation (b) and their (c) maximum (dashed line,unit:dBz) and mean values (solid line,unit:dBz) versus AOD (blue lines in c represent stratiform precipitation,red lines represent convective precipitation,and the error bars indicate standard deviations)
图 5 层状云降水和对流云降水在污染和清洁状态下 (a) 雨顶高度 (H) 和 (b) 降水强度 (R) 差异的频率 (柱) 和累积频率 (曲线)(左侧坐标轴为频率,右侧坐标轴为累积频率)
Figure 5. Cumulative distribution function (curve) and frequency (bar) of the differences in (a) rain top height (H) and (b) rain rate (R) of stratiform and convective precipitation between polluted and clean states (polluted minus clean)(the left axis is the frequency and the right axis is the cumulative frequency)
图 6 层状云降水 (a、b) 和对流云降水 (c、d) 在污染和清洁状态下降水粒子粒径 (等值线,单位:mm) 和数浓度 (色阶,单位:m−3mm−1) 参数差异的垂直剖面 (污染减清洁,a、c为纬向平均,b、d为经向平均)
Figure 6. Vertical profiles of differences in particle size (contour,unit:mm) and number concentration (shaded,unit:m−3mm−1) of stratiform precipitation (a,b) and convective precipitation (c,d) in polluted and clean states (polluted minus clean,a and c show latitudinal averages,b and d are for longitudinal averages)
图 8 层状云降水 (a、b) 和对流云降水 (c、d) 的降水强度与800 hPa相对湿度 (a、c) 及可降水量 (b、d) 的相关关系 (*表示通过95%显著性t检验,**表示通过99%显著性t检验)
Figure 8. Correlation of rain rate with RH at 800 hPa (a,c) and precipitable water vapor (PWV) (b,d) for stratiform precipitation (a,b) and convective precipitation (c,d) (* means the value passing the 95% confidence level t-test,** means the value passing the 99% confidence level t-test)
-
陈爱军,孔宇,陆大春. 2018. 应用CGDPA评估中国大陆地区IMERG的降水估计精度. 大气科学学报,41(6):797-806Chen A J,Kong Y,Lu D C,et al. 2018. Evaluation of the precipitation estimation accuracy of IMERG over mainland China with CGDPA. Trans Atmos Sci,41(6):797-806 (in Chinese) 陈卫东,付丹红,苗世光等. 2015. 北京及周边城市气溶胶污染对城市降水的影响. 科学通报,60(22):2124-2135 doi: 10.1360/N972015-00217Chen W D,Fu D H,Miao S G,et al. 2015. Impacts of aerosols from Beijing and the surrounding areas on urban precipitation. Chinese Sci Bull,60(22):2124-2135 (in Chinese) doi: 10.1360/N972015-00217 陈卫东,付丹红,苗世光等. 2018. 气溶胶污染对夏季降水精细数值预报的影响研究. 地球物理学进展,33(1):10-18 doi: 10.6038/pg2018AA0663Chen W D,Fu D H,Miao S G,et al. 2018. Impacts of aerosols on the fine-scale numerical forecasting of summer precipitation. Prog Geophys,33(1):10-18 (in Chinese) doi: 10.6038/pg2018AA0663 蒋银丰,寇蕾蕾,陈爱军等. 2020. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报,31(5):608-619 doi: 10.11898/1001-7313.20200508Jiang Y F,Kou L L,Chen A J,et al. 2020. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci,31(5):608-619 (in Chinese) doi: 10.11898/1001-7313.20200508 李占清. 2020. 气溶胶对中国天气、气候和环境影响综述. 大气科学学报,43(1):76-92 doi: 10.13878/j.cnki.dqkxxb.20200115005Li Z Q. 2020. Impact of aerosols on the weather,climate and environment of China:An overview. Trans Atmos Sci,43(1):76-92 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20200115005 邱粲,王栋成,李娟等. 2017. 风廓线雷达垂直速度与地面降雨关系研究:以济南为例. 海洋气象学报,37(4):91-100Qiu C,Wang D C,Li J,et al. 2017. Study on the relationship between vertical velocity of wind profiler and rainfall:A case in Jinan. J Mar Meteor,37(4):91-100 (in Chinese) 谭楚岩,邓洁淳,吴雨飞等. 2020. 全球和亚洲人为气溶胶影响东亚气候的数值模拟研究. 气象科学,40(4):438-448 doi: 10.3969/2019jms.0038Tan C Y,Deng J C,Wu Y F,et al. 2020. Numerical study of east Asian climate responses to global and Asian anthropogenic aerosols. Scientia Meteor Sinica,40(4):438-448 (in Chinese) doi: 10.3969/2019jms.0038 王东东,朱彬,江志红等. 2017. 人为气溶胶对中国东部冬季风影响的模拟研究. 大气科学学报,40(4):541-552 doi: 10.13878/j.cnki.dqkxxb.20160525001Wang D D,Zhu B,Jiang Z H,et al. 2017. A modeling study of effects of anthropogenic aerosol on East Asian winter monsoon over Eastern China. Trans Atmos Sci,40(4):541-552 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160525001 王继志,李多,杨元琴等. 2011. 中国北方地区冬季雨雪年度变化与大气气溶胶分布特征研究. 气象与环境学报,27(6):66-71 doi: 10.3969/j.issn.1673-503X.2011.06.011Wang J Z,Li D,Yang Y Q,et al. 2011. Characteristics of annual variations of winter rain/snow and atmospheric aerosol distributions in the north of China. J Meteor Environ,27(6):66-71 (in Chinese) doi: 10.3969/j.issn.1673-503X.2011.06.011 杨慧玲,肖辉,洪延超. 2011. 气溶胶对云宏微观特性和降水影响的研究进展. 气候与环境研究,16(4):525-542 doi: 10.3878/j.issn.1006-9585.2011.04.13Yang H L,Xiao H,Hong Y C. 2011. Progress in impacts of aerosol on cloud properties and precipitation. Climatic Environ Res,16(4):525-542 (in Chinese) doi: 10.3878/j.issn.1006-9585.2011.04.13 Chakraborty S,Fu R,Rosenfeld D,et al. 2018. The influence of aerosols and meteorological conditions on the total rain volume of the mesoscale convective systems over tropical continents. Geophys Res Lett,45(23):13099-13106 Chase R J,Nesbitt S W,McFarquhar G M. 2020. Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere,11(6):619 doi: 10.3390/atmos11060619 Che H Z,Gui K,Xia X G,et al. 2019. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos Chem Phys,19(16):10497-10523 doi: 10.5194/acp-19-10497-2019 Chen T M,Li Z Q,Kahn R A,et al. 2021. Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmos Chem Phys,21(8):6199-6220 doi: 10.5194/acp-21-6199-2021 Clavner M,Cotton W R,van den Heever S C,et al. 2018. The response of a simulated mesoscale convective system to increased aerosol pollution:Part Ⅰ:Precipitation intensity,distribution,and efficiency. Atmos Res,199:193-208 doi: 10.1016/j.atmosres.2017.08.010 Dagan G,Koren I,Altaratz O. 2015. Competition between core and periphery-based processes in warm convective clouds:From invigoration to suppression. Atmos Chem Phys,15(5):2749-2760 doi: 10.5194/acp-15-2749-2015 Fan J W,Yuan T L,Comstock J M,et al. 2009. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res:Atmos,114(D22):D22206 doi: 10.1029/2009JD012352 Fan J W,Leung L R,Li Z Q,et al. 2012. Aerosol impacts on clouds and precipitation in Eastern China:Results from bin and bulk microphysics. J Geophys Res:Atmos,117(D16):D00K36 Fan J W,Wang Y,Rosenfeld D,et al. 2016. Review of aerosol-cloud interactions:Mechanisms,significance,and challenges. J Atmos Sci,73(11):4221-4252 doi: 10.1175/JAS-D-16-0037.1 Gelaro R,McCarty W,Suárez M J,et al. 2017. The modern-era retrospective analysis for research and applications,version 2 (MERRA-2). J Climate,30(14):5419-5454 doi: 10.1175/JCLI-D-16-0758.1 Guo J P,Deng M J,Fan J W,et al. 2014. Precipitation and air pollution at mountain and plain stations in northern China:Insights gained from observations and modeling. J Geophys Res:Atmos,119(8):4793-4807 doi: 10.1002/2013JD021161 Guo J P,Liu H,Li Z Q,et al. 2018. Aerosol-induced changes in the vertical structure of precipitation:A perspective of TRMM precipitation radar. Atmos Chem Phys,18(18):13329-13343 doi: 10.5194/acp-18-13329-2018 Guo X L,Fu D H,Guo X,et al. 2014. A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos Res,142:142-157 doi: 10.1016/j.atmosres.2013.10.006 Hou A Y,Kakar R K,Neeck S,et al. 2014. The global precipitation measurement mission. Bull Amer Meteor Soc,95(5):701-722 doi: 10.1175/BAMS-D-13-00164.1 Huo F,Jiang Z H,Ma H Y,et al. 2021. Reduction in autumn precipitation over Southwest China by anthropogenic aerosol emissions from Eastern China. Atmos Res,257:105627 doi: 10.1016/j.atmosres.2021.105627 Iguchi T,Rutledge S A,Tao W K,et al. 2020. Impacts of aerosol and environmental conditions on maritime and continental deep convective systems using a bin microphysical model. J Geophys Res:Atmos,125(12):e2019JD030952 Jiang M J,Li Z Q,Wan B C,et al. 2016. Impact of aerosols on precipitation from deep convective clouds in Eastern China. J Geophys Res:Atmos,121(16):9607-9620 doi: 10.1002/2015JD024246 Koren I,Remer L A,Altaratz O,et al. 2010. Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos Chem Phys,10(10):5001-5010 doi: 10.5194/acp-10-5001-2010 Lee S S,Donner L J,Phillips V T J,et al. 2008. The dependence of aerosol effects on clouds and precipitation on cloud-system organization,shear and stability. J Geophys Res:Atmos,113(D16):D16202 doi: 10.1029/2007JD009224 Li Z Q,Wang Y,Guo J P,et al. 2019. East Asian study of tropospheric aerosols and their impact on regional clouds,precipitation,and climate (EAST-AIRCPC). J Geophys Res:Atmos,124(23):13026-13054 doi: 10.1029/2019JD030758 Rosenfeld D,Lohmann U,Raga G B,et al. 2008. Flood or drought:How do aerosols affect precipitation?. Science,321(5894):1309-1313 doi: 10.1126/science.1160606 Rosenfeld D,Andreae M O,Asmi A,et al. 2014a. Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys,52(4):750-808 doi: 10.1002/2013RG000441 Rosenfeld D,Sherwood S,Wood R,et al. 2014b. Climate effects of aerosol-cloud interactions. Science,343(6169):379-380 doi: 10.1126/science.1247490 Storer R L,van den Heever S C,Stephens G L. 2010. Modeling aerosol impacts on convective storms in different environments. J Atmos Sci,67(12):3904-3915 doi: 10.1175/2010JAS3363.1 Sun E W,Xu X F,Che H Z,et al. 2019. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J Atmos Sol Terr Phys,186:8-19 doi: 10.1016/j.jastp.2019.01.019 Sun Y,Zhao C F. 2020. Influence of Saharan dust on the large-scale meteorological environment for development of tropical cyclone over north Atlantic Ocean Basin. J Geophys Res:Atmos,125(23):e2020JD033454 Tao W K,Chen J P,Li Z Q,et al. 2012. Impact of aerosols on convective clouds and precipitation. Rev Geophys,50(2):RG2001 Wang C E. 2013. Impact of anthropogenic absorbing aerosols on clouds and precipitation:A review of recent progresses. Atmos Res,122:237-249 doi: 10.1016/j.atmosres.2012.11.005 Xu X D,Guo X L,Zhao T L,et al. 2017. Are precipitation anomalies associated with aerosol variations over Eastern China?. Atmos Chem Phys,17(12):8011-8019 doi: 10.5194/acp-17-8011-2017 Yang Y,Fan J W,Leung L R,et al. 2016. Mechanisms contributing to suppressed precipitation in Mt. Hua of central China. Part Ⅰ:Mountain valley circulation. J Atmos Sci,73(3):1351-1366 doi: 10.1175/JAS-D-15-0233.1 Yang Y K,Zhao C F,Wang Y,et al. 2021. Multi-source data based investigation of aerosol-cloud interaction over the North China plain and north of the Yangtze Plain. J Geophys Res:Atmos,126(19):e2021JD035609 Zhang A Q,Fu Y F. 2018a. Life cycle effects on the vertical structure of precipitation in East China measured by Himawari-8 and GPM DPR. Mon Wea Rev,146(7):2183-2199 doi: 10.1175/MWR-D-18-0085.1 Zhang A Q,Fu Y F,Chen Y L,et al. 2018b. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas:GPM observations. Atmos Res,202:10-22 doi: 10.1016/j.atmosres.2017.11.001 Zhao C F,Lin Y L,Wu F,et al. 2018. Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys Res Lett,45(16):8604-8611 doi: 10.1029/2018GL079427 Zhao C F,Yang Y K,Fan H,et al. 2020. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. Natl Sci Rev,7(3):492-495 doi: 10.1093/nsr/nwz184 Zhou R J,Yan T Y,Yang S P,et al. 2022. Characteristics of clouds,precipitation,and latent heat in midlatitude frontal system mixed with dust storm from GPM satellite observations and WRF simulations. JUSTC,52(2):3 doi: 10.52396/JUSTC-2021-0238 Zhou S Y,Yang J,Wang W C,et al. 2018. Shift of daily rainfall peaks over the Beijing-Tianjin-Hebei region:An indication of pollutant effects?. Int J Climatol,38(13):5010-5019 doi: 10.1002/joc.5700 Zhou S Y,Yang J,Wang W C,et al. 2020. An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing-Tianjin-Hebei. Atmos Chem Phys,20(9):5211-5229 doi: 10.5194/acp-20-5211-2020 -