留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准平直长路径与多折向路径东移高原涡的环境场特征

郁淑华 高文良 彭骏

郁淑华,高文良,彭骏. 2022. 准平直长路径与多折向路径东移高原涡的环境场特征. 气象学报,80(6):864-877 doi: 10.11676/qxxb2022.067
引用本文: 郁淑华,高文良,彭骏. 2022. 准平直长路径与多折向路径东移高原涡的环境场特征. 气象学报,80(6):864-877 doi: 10.11676/qxxb2022.067
Yu Shuhua, Gao Wenliang, Peng Jun. 2022. The ambient field characteristics for quasi-straight long path and multi-turning path of eastward moving Tibetan Plateau vortex. Acta Meteorologica Sinica, 80(6):864-877 doi: 10.11676/qxxb2022.067
Citation: Yu Shuhua, Gao Wenliang, Peng Jun. 2022. The ambient field characteristics for quasi-straight long path and multi-turning path of eastward moving Tibetan Plateau vortex. Acta Meteorologica Sinica, 80(6):864-877 doi: 10.11676/qxxb2022.067

准平直长路径与多折向路径东移高原涡的环境场特征

doi: 10.11676/qxxb2022.067
基金项目: 国家自然科学基金项目(91937301)
详细信息
    作者简介:

    郁淑华,主要从事青藏高原及其邻近地区灾害天气研究。 E-mail:scshuhuayu@163.com

    通讯作者:

    高文良,主要从事青藏高原及其邻近地区灾害天气、气候研究。E-mail:gaowl003@163.com

  • 中图分类号: P447

The ambient field characteristics for quasi-straight long path and multi-turning path of eastward moving Tibetan Plateau vortex

  • 摘要: 利用1998—2018年NCEP/NCAR 全球最终分析数据、大气观测资料、青藏高原低涡切变线年鉴,采用合成方法分析了准平直长路径和多折向路径东移高原低涡的环境场特征,探讨了低涡折向的主导因素。结果表明: 准平直长路径低涡、多折向路径低涡长时间活动的共同环境场特征是有明显影响低涡活动的天气系统, 副热带高压(简称副高)位于高原低涡东南方,高原低涡以北上空伴有东、西段急流;低涡有正涡度平流输入,高原低涡上空为辐散区,高空高位涡下传到低涡。同时,二者环境场特征存在明显差异,多折向路径低涡伴有较强的热带低压活动,是在副高、西风带天气系统、热带低压相互作用的环流背景下,高原涡东移受阻而折向; 准平直长路径低涡是在西风带天气系统为主导的环流背景下向东移动;准平直长路径低涡受冷空气、西南气流与高空锋区的影响比多折向路径低涡强,造成了准平直长路径低涡的正涡度平流、位涡、斜压性、高空辐散比多折向路径低涡强。多折向路径低涡折向的主导因素是环境场条件使低涡在减弱、东移受阻的情况下高空高位涡中心在低涡西部上空,高位涡下传使低涡加强的强正位涡异常区出现在低涡西部,低涡移向低涡加强的区域。

     

  • 图 1  1998—2018年5—9月东移路径 (a) 准平直长路径涡,(b) 多折向涡 (数字为表1中高原涡序号;实心圆为08时高原涡位置,空心圆为20时高原涡位置)

    Figure 1.  The eastward paths of (a) QSLTPVs and (b) MTTPVs from May to September during 1998—2018 (the numbers denote the sequence of TPVs as listed in Table 1;the solid circle and hollow circle are the positions of TPV at 08:00 and 20:00 BT,respectively)

    图 2  降水量 (色阶,单位:mm) 分布 (a. 准平直长路径涡4例之和,b. 多折向路径涡6例之和)

    Figure 2.  Total process precipitation of (a) four cases of QSLTPVs and (b) six cases of MTTPVs (shaded,unit:mm)

    图 3  合成的500 hPa位势高度 (黑色实线,单位:gpm)、温度 (红色虚线,单位:℃) 分布 (a. 组1涡移出时,b. 组1涡加强时,c. 组1涡持续时,d. 组2涡移出时,e. 组2涡折向时,f. 组2涡加强时,g. 组2涡持续时;红色原点为高原涡中心,棕色粗实线表示槽线或切变线,蓝色粗实线表示副热带高压脊线,绿色框线表示锋区位置;xy轴分别是以低涡中心为中心的纬线、经线方向的相对位置)

    Figure 3.  Distributions of composite 500 hPa geopotential height (black solid line,unit:gpm) and temperature (red dashed line,unit:℃)(a. Group 1 moving out,b. Group 1 during strengthening,c. Group 1 persistence,d. Group 2 moving out,e. Group 2 turning direction,f. Group 2 during strengthening,g. Group 2 persistence;the red solid circle is the centre of TPV,the brown thick solid line denotes the trough line or shear line,the blue thick solid line denotes the ridge line of the western Pacific Subtropical High,and the green frame line represents the position of the front area;the coordinates in the x-axis and y-axis are the relative coordinates from the center of vortices in zonal and meridional directions)

    图 4  合成的500 hPa相对湿度 (色阶,单位:%)、温度 (红色虚线,单位:℃) 和风 (矢量,单位:m/s) 分布 (a. 组1涡移出时,b. 组1涡加强时,c. 组1涡持续时,d. 组2涡移出时,e. 组2涡折向时,f. 组2涡加强时,g. 组2涡持续时;红色原点为高原涡中心)

    Figure 4.  Distributions of composite 500 hPa relative humidity (shaded,unit:%),temperature (red dashed line,unit:℃) and wind (vector,unit:m/s)(a. Group 1 moving out,b. Group 1 during strengthening,c. Group 1 persistence,d. Group 2 moving out,e. Group 2 turning direction,f. Group 2 during strengthening,g. Group 2 persistence;the red solid circle is the centre of TPV)

    图 5  合成的200 hPa风 (矢量,色阶为大风速区,单位:m/s)、位势高度 (黑色实线,单位:gpm) 分布 (a. 组1涡移出时,b. 组1涡加强时,c. 组1涡持续时,d. 组2涡移出时,e. 组2涡折向时,f. 组2涡加强时,g. 组2涡持续时;红色原点为高原涡中心)

    Figure 5.  Distributions of composite 200 hPa wind (vector,color-shaded areas denote large wind velocity areas,unit:m/s) and geopotential height (black solid line,unit:gpm)(a. Group 1 moving out,b. Group 1 during strengthening,c. Group 1 persistence,d. Group 2 moving out,e. Group 2 turning direction,f. Group 2 during strengthening,g. Group 2 persistence;the red solid circle is the centre of TPV)

    图 6  过高原涡中心 (红色圆点) 的合成位涡(等值线,单位:PVU) 纬向垂直剖面 (a. 组1涡移出时,b. 组1涡加强时,c. 组1涡持续时,d. 组2涡移出时,e. 组2涡折向时,f. 组2涡加强时,g. 组2涡持续时)

    Figure 6.  Height-zonal cross-sections of composite potential vorticity (contour,unit:PVU) passing through the center of the plateau vortex (red dot)(a. Group 1 moving out,b. Group 1 during strengthening,c. Group 1 persistence,d. Group 2 moving out,e. Group 2 turning direction,f. Group 2 during strengthening,g. Group 2 persistence)

    图 7  环境场概念模型 (a. 组1涡加强时,b. 组2涡折向时;括号内数字是物理量的值)

    Figure 7.  Conceptual models of ambient fields (a. Group 1 during strengthening,b. Group 2 turning direction;the number in parentheses is the value of the physical quantity)

    表  1  1998—2018年5—9月东移路径的准平直长路径涡、多折向涡过程

    Table  1.   List of processes of quasi-straight long-path plateau vortices (QSLTPVs) and multi-turning path plateau vortices (MTTPVs) from May to September during 1998 to 2018

    路径
    类别
    序号高原涡
    编号
    过程时间移出高原
    时间
    中心降水量
    (mm)
    暴雨分布最广的日期\省份
    准平直1C00127月1日08时—3日20时1日20时246.67月1日\川、鄂、渝
    2C01156月1日08时—5日20时2日20时235.46月4日\桂、粤、闽、赣
    3C13236月4日20时—10日08时5日20时287.96月7日\苏、浙、皖、鄂、湘、贵
    4C16195月17日20时—22日20时19日08时111.15月19日\渝、湘、贵、赣
    多折向1C00106月17日08时—23日08时17日20时413.56月22日\鄂、浙、皖、湘、赣、闽、贵、桂
    2C03197月12日20时—14日20时13日08时174.77月12日\陕、浙
    3C07266月6日20时—13日20时8日08时189.76月11日\浙(大暴雨)
    4C08196月5日20时—10日20时7日08时303.26月10日\鄂、湘、浙、皖、沪
    5C08317月20日08时—23日08时21日20时345.77月22日\川、渝、贵、鄂、陕、豫、皖、苏
    6C11417月30日20时—8月3日08时31日20时221.48月1日\川、渝、陕、鄂、豫
    注:高原涡编号是以“C”字母开头,由年份的后2位数与当年低涡顺序2位数组成。
    下载: 导出CSV

    表  2  与高原涡相伴合成的200 hPa最大散度

    Table  2.   Composite 200 hPa maximum divergence accompanied with the TPVs

    准平直长路径涡多折向涡
    主要时次最大散度值
    (×10−5 s−1
    主要时次最大散度值
    (×10−5 s−1
    形成4.324形成3.497
    移出4.308移出5.178
    加强3.997折向2.949
    持续3.828加强1.959
    将消失0.921持续1.775
    将消失1.570
    下载: 导出CSV

    表  3  高原涡合成的涡中心区(PV)1平均值

    Table  3.   Composite mean values of (PV)1 in vortex central area for the TPVs

    准平直长路径涡多折向涡
    主要时次(PV)1平均值 (PVU)主要时次(PV)1平均值(PVU)
    形成0.6832544形成0.8333738
    移出1.0195254移出0.8571036
    加强1.0785650折向1.0334851
    持续1.0899944加强1.0574530
    将消失1.0156387持续1.0790279
    将消失1.1936706
    下载: 导出CSV

    表  4  高原涡合成的涡中心区(PV)2 平均值

    Table  4.   Composite mean values of (PV)2 in vortex central area for the TPVs

    准平直长路径涡多折向涡
    主要时次(PV)2平均值 (PVU)主要时次(PV)2平均值 (PVU)
    形成− 0.0255057形成− 0.0583614
    移出− 0.0338160移出− 0.0371240
    加强− 0.0356576折向− 0.0248671
    持续− 0.0099520加强− 0.0261846
    将消失− 0.0142794持续− 0.0264430
    将消失− 0.0254278
    下载: 导出CSV
  • 丁治英,吕君宁. 1990. 青藏高原低涡东移的数值试验. 南京气象学院学报,13(3):426-433

    Ding Z Y,Lv J N. 1990. A numerical experiment on the eastward movement of a Qinghai-Xizang plateau vortex. J Nanjing Inst Meteor,13(3):426-433 (in Chinese)
    高笃鸣,李跃清,程晓龙. 2018. 基于西南涡加密探空资料同化的一次奇异路径耦合低涡大暴雨数值模拟研究. 气象学报,76(3):343-360 doi: 10.11676/qxxb2018.008

    Gao D M,Li Y Q,Cheng X L. 2018. A numerical study on a heavy rainfall caused by an abnormal-path coupling vortex with the assimilation of southwest China vortex scientific experiment data. Acta Meteor Sinica,76(3):343-360 (in Chinese) doi: 10.11676/qxxb2018.008
    何光碧,高文良,屠妮妮. 2009. 两次高原低涡东移特征及发展机制动力诊断. 气象学报,67(4):599-612 doi: 10.11676/qxxb2009.060

    He G B,Gao W L,Tu N N. 2009. The dynamic diagnosis on easterwards moving characteristics and developing mechanism of two Tibetan Plateau vortex processes. Acta Meteor Sinica,67(4):599-612 (in Chinese) doi: 10.11676/qxxb2009.060
    胡亮,徐祥德,赵平. 2018. 夏季青藏高原对流系统移出高原的气象背景场分析. 气象学报,76(6):944-954 doi: 10.11676/qxxb2018.053

    Hu L,Xu X D,Zhao P. 2018. A study of the meteorological background of convective systems over the Tibetan Plateau. Acta Meteor Sinica,76(6):944-954 (in Chinese) doi: 10.11676/qxxb2018.053
    李国平. 2002. 青藏高原动力气象学. 北京:气象出版社,251pp

    Li G P. 2002. Dynamic Meteorology of the Tibetan Plateau. Beijing:China Meteorological Press,251pp (in Chinese)
    李英,陈联寿,王继志. 2004. 登陆热带气旋长久维持与迅速消亡的大尺度环流特征. 气象学报,62(2):167-179 doi: 10.3321/j.issn:0577-6619.2004.02.004

    Li Y,Chen L S,Wang J Z. 2004. The diagnostic analysis on the characteristics of large scale circulation corresponding to the sustaining and decaying of tropical cyclone after it's landfall. Acta Meteor Sinica,62(2):167-179 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.02.004
    李跃清,郁淑华,彭骏等. 2010. 青藏高原低涡切变线年鉴(1998). 北京:科学出版社,234pp

    Li Y Q,Yu S H,Peng J,et al. 2010. Tibetan Plateau Vortex and Shear Line Yearbook 1998. Beijing:Science Press,234pp (in Chinese)
    刘富明,洑梅娟. 1986. 东移的青藏高原低涡的研究. 高原气象,5(2):125-134

    Liu F M,Fu M J. 1986. A study on the moving eastward Lows over Qinghai-Xizang Plateau. Plateau Meteor,5(2):125-134 (in Chinese)
    刘健文,郭虎,李耀东等. 2005. 天气分析预报物理量计算基础. 北京:气象出版社,172-173

    Liu J W,Guo H,Li Y D,et al. 2005. Basic Caculations of Physic Elements in Weather Forecasting. Beijing:China Meteorological Press,172-173 (in Chinese)
    乔全明. 1987. 夏季500 hPa移出高原低涡的背景场分析. 高原气象,6(1):45-55

    Qiao Q M. 1987. The environment analysis on 500 hPa vortexes moving eastward out of Tibet Plateau in summer. Plateau Meteor,6(1):45-55 (in Chinese)
    青藏高原气象科学研究拉萨会战组. 1981. 夏半年青藏高原500毫巴低涡切变线的研究. 北京:科学出版社,122pp

    The Lhasa Focus Group on Tibetan Plateau Meteorology Research. 1981. The Research of Vortex and Shear Line on 500 hPa of Tibetan Plateau in Summer Half Year. Beijing:Science Press,122pp (in Chinese)
    屈顶,李跃清. 2021. 西南涡之九龙涡的三维环流和动力结构特征. 高原气象,40(6):1497-1512 doi: 10.7522/j.issn.1000-0534.2021.zk002

    Qu D,Li Y Q. 2021. Characteristics of the three-dimensional circulation and dynamic structure of Jiulong vortex of southwest China vortex. Plateau Meteor,40(6):1497-1512 (in Chinese) doi: 10.7522/j.issn.1000-0534.2021.zk002
    寿绍文,励申申,寿亦萱等. 2009. 中尺度大气动力学. 北京:高等教育出版社,385pp

    Shou S W,Li S S,Shou Y X,et al. 2009. Mesoscale Atmospheric Dynamics. Beijing:Higher Education Press,385pp (in Chinese)
    吴国雄,刘还珠. 1999. 全型垂直涡度倾向方程和倾斜涡度发展. 气象学报,57(1):1-15 doi: 10.11676/qxxb1999.001

    Wu G X,Liu H Z. 1999. Complete form of vertical vorticity tendency equation and slantwise vorticity development. Acta Meteor Sinica,57(1):1-15 (in Chinese) doi: 10.11676/qxxb1999.001
    肖递祥,郁淑华,屠妮妮. 2016. 高原低涡移出高原后持续活动的典型个例分析. 高原气象,35(1):43-54

    Xiao D X,Yu S H,Tu N N. 2016. Analysis of typical sustained plateau vortexes after departure. Plateau Meteor,35(1):43-54 (in Chinese)
    肖玉华,郁淑华,高文良等. 2018. 一例伴随西南涡的入海高原涡持续活动成因分析. 高原气象,37(6):1616-1627

    Xiao Y H,Yu S H,Gao W L,et al. 2018. Analysis of the causes of one sustained enter-the-sea plateau vortex accompanied by southwest vortex. Plateau Meteor,37(6):1616-1627 (in Chinese)
    姚秀萍, 吴国雄, 赵兵科等. 2007. 与梅雨锋上低涡降水相伴的干侵入研究. 中国科学 D辑: 地球科学, 37(3): 417-428.

    Yao X P, Wu G X, Zhao B K, et al. 2007. Research on the dry intrusion accompanying the low vortex precipitation. Sci China Ser D-Earth Sci, 50(9): 1396-1408
    叶笃正,高由禧. 1979. 青藏高原气象学. 北京:科学出版社,278pp

    Ye D Z,Gao Y X. 1979. The Meteorology of Qinghai-Xizang Plateau. Beijing:Science Press,278pp (in Chinese)
    于玉斌,姚秀萍. 2000. 对华北一次特大台风暴雨过程的位涡诊断分析. 高原气象,19(1):111-120 doi: 10.3321/j.issn:1000-0534.2000.01.014

    Yu Y B,Yao X P. 2000. The diagnosis analysis of potential vorticity for a severe typhoon rainstorm in North China. Plateau Meteor,19(1):111-120 (in Chinese) doi: 10.3321/j.issn:1000-0534.2000.01.014
    郁淑华,高文良. 2006. 高原低涡移出高原的观测事实分析. 气象学报,64(3):392-399 doi: 10.3321/j.issn:0577-6619.2006.03.014

    Yu S H,Gao W L. 2006. Observational analysis on the movement of vortices before/after moving out the Tibetan Plateau. Acta Meteor Sinica,64(3):392-399 (in Chinese) doi: 10.3321/j.issn:0577-6619.2006.03.014
    郁淑华,高文良,顾清源. 2007. 近年来影响我国东部洪涝的高原东移涡环流场特征分析. 高原气象,26(3):466-475 doi: 10.3321/j.issn:1000-0534.2007.03.005

    Yu S H,Gao W L,Gu Q Y. 2007. The middle-upper circulation analyses of the plateau vortex moving out of plateau and influencing flood in East China in recent years. Plateau Meteor,26(3):466-475 (in Chinese) doi: 10.3321/j.issn:1000-0534.2007.03.005
    郁淑华,高文良. 2016. 高原涡移出高原后持续的对流层高层环流特征. 高原气象,35(6):1441-1455 doi: 10.7522/j.issn.1000-0534.2016.00026

    Yu S H,Gao W L. 2016. Circulation features of sustained departure Qinghai-Xizang Plateau vortex at upper tropospheric level. Plateau Meteor,35(6):1441-1455 (in Chinese) doi: 10.7522/j.issn.1000-0534.2016.00026
    郁淑华,高文良. 2017. 高原低涡与西南涡结伴而行的不同活动形式个例的环境场和位涡分析. 大气科学,41(4):831-856

    Yu S H,Gao W L. 2017. Analysis of environmental background and potential vorticity of different accompanied moving cases of Tibetan Plateau vortex and Southwest China vortex. Chinese J Atmos Sci,41(4):831-856 (in Chinese)
    郁淑华,高文良. 2018a. 冷空气对夏季高原涡移出高原后长久与短期活动影响的对比分析. 大气科学,42(6):1297-1326

    Yu S H,Gao W L. 2018a. A comparative analysis of cold air influences on short- and long-time maintenance of the Tibetan Plateau vortex after it moves out of the plateau. Chinese J Atmos Sci,42(6):1297-1326 (in Chinese)
    郁淑华,屠妮妮,高文良. 2018b. 一类青藏高原低涡异常路径的环境场分析. 高原气象,37(3):686-701

    Yu S H,Tu N N,Gao W L. 2018b. Environmental fields analysis of a kind of Qinghai-Tibetan Plateau Vortex abnormal tracks. Plateau Meteor,37(3):686-701 (in Chinese)
    张弘,陈卫东,孙伟. 2006. 一次台风与河套低涡共同影响的陕北暴雨分析. 高原气象,25(1):52-59 doi: 10.3321/j.issn:1000-0534.2006.01.007

    Zhang H,Chen W D,Sun W. 2006. Analysis of the influence of a Typhoon and meso-scale vortex in inner-mougolia irrigation area of Yellow river on rainstorm in north Shaanxi. Plateau Meteor,25(1):52-59 (in Chinese) doi: 10.3321/j.issn:1000-0534.2006.01.007
    赵平,李跃清,郭学良等. 2018. 青藏高原地气耦合系统及其天气气候效应:第三次青藏高原大气科学试验. 气象学报,76(6):833-860 doi: 10.11676/qxxb2018.060

    Zhao P,Li Y Q,Guo X L,et al. 2018. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects:The third Tibetan Plateau atmospheric scientific experiment. Acta Meteor Sinica,76(6):833-860 (in Chinese) doi: 10.11676/qxxb2018.060
    中国气象局成都高原气象研究所,中国气象学会高原气象学委员会. 2020. 青藏高原低涡切变线年鉴(2018). 北京:科学出版社,301pp

    Chengdu Institute of Plateau Meteorology,Plateau Meteorology Committee of Chinese Meteorological Society. 2020. Tibetan Plateau Vortex and Shear Line Yearbook 2018. Beijing:Science Press,301pp (in Chinese)
    Chang C P,Yi L,Chen G T J. 2000. A numerical simulation of vortex development during the 1992 East Asian summer monsoon onset using the navy's regional model. Mon Wea Rev,128(6):1604-1631 doi: 10.1175/1520-0493(2000)128<1604:ANSOVD>2.0.CO;2
    Curio J,Schiemann R,Hodges K I,et al. 2019. Climatology of Tibetan Plateau vortices in reanalysis data and a high-resolution global climate model. J Climate,32(6):1933-1950 doi: 10.1175/JCLI-D-18-0021.1
    Hoskins B J,Mcintyre M E,Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc,111(470):877-946 doi: 10.1002/qj.49711147002
    Kuo Y H,Cheng L S,Bao J W. 1988. Numerical simulation of the 1981 Sichuan flood. Part Ⅰ:Evolution of a mesoscale Southwest vortex. Mon Wea Rev,116(12):2481-2504 doi: 10.1175/1520-0493(1988)116<2481:NSOTSF>2.0.CO;2
    Li L,Zhang R H,Wen M,et al. 2019a. Characteristics of the Tibetan Plateau vortices and the related large-scale circulations causing different precipitation intensity. Theor Appl Climatol,138(1-2):849-860 doi: 10.1007/s00704-019-02870-4
    Li L,Zhang R H,Wen M,et al. 2019b. Development and eastward movement mechanisms of the Tibetan Plateau vortices moving off the Tibetan Plateau. Climate Dyn,52(7-8):4849-4859 doi: 10.1007/s00382-018-4420-z
    Li L,Zhang R H,Wu P L,et al. 2020. Roles of Tibetan Plateau vortices in the heavy rainfall over southwestern China in early July 2018. Atmospheric Res,245:105059 doi: 10.1016/j.atmosres.2020.105059
    Tao S Y,Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull Amer Meteor Soc,62(1):23-30 doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2
    Wang B,Orlanski I. 1987. Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon Wea Rev,115(7):1370-1393 doi: 10.1175/1520-0493(1987)115<1370:SOAHRV>2.0.CO;2
    Xiang S Y,Li Y Q,Li D,et al. 2013. An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data. Meteor Atmos Phys,122(1-2):33-45 doi: 10.1007/s00703-013-0269-1
    Yu S H,Gao W L,Peng J,et al. 2014. Observational facts of sustained departure plateau vortexes. J Meteor Res,28(2):296-307 doi: 10.1007/s13351-014-3023-9
    Yu S H,Gao W L,Xiao D X,et al. 2016. Observational facts regarding the joint activities of the southwest vortex and plateau vortex after its departure from the Tibetan Plateau. Adv Atmos Sci,33(1):34-46 doi: 10.1007/s00376-015-5039-1
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  15
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2022-07-05
  • 网络出版日期:  2022-07-26

目录

    /

    返回文章
    返回