Evaluation of forecast skills and error correction of S2S models for pentad precipitation anomaly in Sichuan province during rainy season
-
摘要: 针对四川汛期候降水距平百分率(PAP),采用距平相关系数(ACC)、时间相关系数(TCC)、符号一致率(SCR)和趋势异常综合评分(PS)4种预测评分方法对S2S计划中10个模式的预测技巧进行检验评估,并在误差分析的基础上提出“正负概率异常订正”方案对各模式候降水距平百分率预测结果进行订正。结果表明,随着预测时效延长,多数模式的预测技巧快速降低,模式间预测技巧的差距缩小。至第10天左右,各模式进入低技巧时段,预测技巧随时效变化的幅度减小,各模式仅对降水趋势异常有一定预测能力,其中BoM模式明显高于其他模式。除BoM模式外的其他模式对降水年际变化幅度都存在低估,降水距平百分率异常偏差为−33%—−18%,不随预测时效发生太大变化,但空间分布不均。经过误差订正各模式的距平相关系数和符号一致率有所提高,趋势异常综合评分有效提高,并且对次季节尺度的订正效果优于天气尺度。订正后,各模式在次季节尺度的平均趋势异常综合评分均高于76.8, 66.7%的模式评分为79.2—80.2,超过业务评分标准(72.0)近8分。订正效果在4 a独立样本检验中也得到验证。Abstract: In this paper, anomaly correlation coefficient (ACC), time correlation coefficient (TCC), symbol consistency rate (SCR) and trend anomaly comprehensive score (PS) are used to evaluate the prediction skills of ten models in the S2S plan for pentad precipitation anomaly percentage (PAP) in Sichuan province during rainy season. Based on model bias analysis, a "correction of positive and negative probability anomaly" scheme was proposed to improve the model forecast. The results show the prediction skills of most models decrease rapidly, and the gap of prediction skills among these models narrows with increasing forecast lead-time. At around the 10th day, all the models enter the low skill period with little changes with lead-time. The models only have a certain ability to predict the abnormal trend of precipitation, and the BoM model has the best skill among these models. All the models except the BoM underestimate the anomaly degree of precipitation trend. The anomaly deviations of predicted PAP by these models are from −33% to −18% and invariant with the lead-time, but they are unevenly distributed in space. After error correction, ACC, SCR and PS of each model are improved, especially PS. The correction effect on the sub-seasonal scale is better than that on the synoptic scale. After modification, the average PS scores of all models on the sub-seasonal scale are higher than 76.8, of which 66.7% are within the range 79.2—80.2, nearly 8 points higher than the business-scoring standard (72.0). This correction effect has also been verified in 4-year independent sample tests.
-
图 2 S2S计划模式对四川省汛期候降水距平百分率的预测技巧 (a. ACC,b. PS评分,c. TCC通过0.1显著性t检验的站点比例 (单位:%),d. SCR≥60%的站点比例 (单位:%))
Figure 2. Forecast skills of models in the S2S plan (a. ACC,b. PS score,c. percentage of stations for TCC passing the significance t-test at 0.1 level (unit:%),d. percentage of stations for SCR≥60% (unit:%) of S2S models for pentad precipitation anomaly percentage in Sichuan province during the flood season)
图 3 S2S计划模式在不同时间尺度下对四川汛期候降水距平百分率的预测技巧 (a. ACC,b. PS评分,c. TCC通过0.1显著性t检验的站点比例 (单位:%),d. SCR≥60%的站点比例 (单位:%))
Figure 3. Forecast skills of models in the S2S plan on different time scales (a. ACC,b. PS score,c. percentage of stations for TCC passing the significance t-test at 0.1 level (unit:%),d. percentage of stations for SCR≥60% (unit:%) of S2S models for pentad precipitation anomaly percentage in Sichuan province during the flood season)
图 8 S2S计划各模式在预测时效为1—26 d时对四川汛期候降水距平百分率的异常偏差 (a. ECWMF,b. UKMO,c. KMA,d. CNR-ISAC,e. CMA,f. JMA,g. ECCC,h. BoM,i. NCEP,j. CNRM)
Figure 8. Anomaly deviations of S2S models for pentad precipitation anomaly percentage in Sichuan province during the flood season in the lead-time from 1 to 26 days (a. ECWMF,b. UKMO,c. KMA,d. CNR-ISAC,e. CMA,f. JMA,g. ECCC,h. BoM,i. NCEP,j. CNRM)
图 9 误差订正前后S2S各模式在月内 (a)、天气尺度 (b) 和次季节尺度 (c) 对四川省汛期候降水距平百分率的PS评分及其订正率
Figure 9. PS scores and PS correction rates of S2S models on pentad precipitation anomaly percentage during flood season in Sichuan province on monthly scale (a), synoptic scale (b) and sub-seasonal scale (c) before and after error correction
图 10 独立样本检验中误差订正前后S2S各模式在月内 (a)、天气尺度 (b) 和次季节尺度 (c) 对四川省汛期候降水距平百分率的PS评分及其订正率
Figure 10. PS scores and PS correction rates of S2S models on pentad precipitation anomaly percentage during flood season in Sichuan province on monthly scale (a),synoptic scale (b) and sub-seasonal scale (c) before and after error correction in the independent sample test
表 1 模式资料简介
Table 1. Profiles of model data
预报中心 预报形式 回报时段 预报时效 频率 海洋耦合 海冰耦合 水平分辨率 评估样本量 ECMWF 动态 1999—2019年 第0—46天 2次/周 是 否 1.5°×1.5° 44/a CNR-ISAC 固定 1990—2010年 第0—31天 1次/(5 d) 否 否 1.5°×1.5° 31/a UKMO 动态 1999—2021年 第0—60天 4次/月 是 是 1.5°×1.5° 20/a CMA 固定 1994—2014年 第0—60天 1次/日 是 是 1.5°×1.5° 153/a NCEP 固定 1999—2010年 第0—44天 1次/日 是 是 1.5°×1.5° 153/a KMA 动态 1991—2010年 第0—60天 4次/月 是 是 1.5°×1.5° 20/a JMA 固定 1981—2010年 第0—33天 3次/月 否 否 1.5°×1.5° 15/a ECCC 固定 1995—2014年 第0—32天 1次/周 否 否 1.5°×1.5° 22/a BoM 固定 1981—2013年 第0—62天 6次/月 是 否 2.5°×2.5° 30/a CNRM 固定 1993—2014年 第0—61天 4次/月 是 是 1.5°×1.5° 20/a -
程娅蓓,任宏利,谭桂容. 2016. 东亚夏季风模式跨季预测的EOF-相似误差订正. 应用气象学报,27(3):285-292 doi: 10.11898/1001-7313.20160303Cheng Y B,Ren H L,Tan G R. 2016. Empirical orthogonal function-analogue correction of extra-seasonal dynamical prediction of East-Asian summer monsoon. J Appl Meteor Sci,27(3):285-292 (in Chinese) doi: 10.11898/1001-7313.20160303 丑纪范. 2003a. 短期气候预测的现状、问题与出路(一). 新疆气象,26(1):1-4Chou J F. 2003a. Short term climatic forecast:Present condition,problems and way out. Bim Xinjiang Meteorol,26(1):1-4 (in Chinese) 丑纪范. 2003b. 短期气候预测的现状、问题与出路(二). 新疆气象,26(2):1-4Chou J F. 2003b. Short term climatic forecast:Present condition,problems and way out. Bim Xinjiang Meteorol,26(2):1-4 (in Chinese) 甘薇薇,马振峰,琚建华等. 2018. 热带印度洋MJO活动异常对四川盆地降水的影响. 高原山地气象研究,38(3):17-22 doi: 10.3969/j.issn.1674-2184.2018.03.003Gan W W,Ma Z F,Ju J H,et al. 2018. The impacts of tropic India Ocean MJO abnormal activities on the precipitation over Sichuan Basin. Plateau Mountain Meteor Res,38(3):17-22 (in Chinese) doi: 10.3969/j.issn.1674-2184.2018.03.003 贺铮,徐邦琪,高迎侠. 2018. BCC S2S模式对亚洲夏季风准双周振荡预报评估. 应用气象学报,29(4):436-448 doi: 10.11898/1001-7313.20180405He Z,Xu B Q,Gao Y X. 2018. Evaluation of quasi-biweekly oscillation prediction in the Asian Summer Monsoon regions by BCC S2S model. J Appl Meteor Sci,29(4):436-448 (in Chinese) doi: 10.11898/1001-7313.20180405 胡星,张志强,张强等. 2020. 次季节—季节(S2S)预测数据分析与应用. 气象科技,48(6):779-787 doi: 10.19517/j.1671-6345.20190548Hu X,Zhang Z Q,Zhang Q,et al. 2020. Analysis and application of sub-seasonal to seasonal prediction data. Meteor Sci Technol,48(6):779-787 (in Chinese) doi: 10.19517/j.1671-6345.20190548 李佰平,智协飞. 2012. ECMWF模式地面气温预报的四种误差订正方法的比较研究. 气象,38(8):897-902 doi: 10.7519/j.issn.1000-0526.2012.08.001Li B P,Zhi X F. 2012. Comparative study of four correction schemes of the ECMWF surface temperature forecasts. Meteor Mon,38(8):897-902 (in Chinese) doi: 10.7519/j.issn.1000-0526.2012.08.001 李慧,王晓春,赵立清等. 2020. 西北太平洋台风在S2S时间尺度预报效果评估. 热带气象学报,36(1):51-59 doi: 10.16032/j.issn.1004-4965.2020.006Li H,Wang X C,Zhao L Q,et al. 2020. Evaluating northwestern pacific tropical storm forecasting with the subseasonal to seasonal prediction project database. J Trop Meteor,36(1):51-59 (in Chinese) doi: 10.16032/j.issn.1004-4965.2020.006 李莉,李应林,田华等. 2011. T213全球集合预报系统性误差订正研究. 气象,37(1):31-38 doi: 10.7519/j.issn.1000-0526.2011.01.004Li L,Li Y L,Tian H,et al. 2011. Study of bias-correction in T213 global ensemble forecast. Meteor Mon,37(1):31-38 (in Chinese) doi: 10.7519/j.issn.1000-0526.2011.01.004 林纾,惠志红,郭俊琴等. 2013. 150天韵律方法月内过程预测系统简介及应用检验. 气象科技进展,3(5):48-51Lin S,Hui Z H,Guo J Q,et al. 2013. Introduction and application test of the 150 days' cycle method in the prediction system for precipitation processes within a month. Adv Meteor Sci Technol,3(5):48-51 (in Chinese) 马清,龚建东,李莉等. 2008. 超级集合预报的误差订正与集成研究. 气象,34(3):42-48 doi: 10.7519/j.issn.1000-0526.2008.03.007Ma Q,Gong J D,Li L,et al. 2008. Study of bias-correction and consensus in regional multi-model super-ensemble forecast. Meteor Mon,34(3):42-48 (in Chinese) doi: 10.7519/j.issn.1000-0526.2008.03.007 庞轶舒,秦宁生,刘博等. 2021a. S2S模式对四川汛期极端降水的预测技巧分析. 气象,47(5):586-600Pang Y S,Qin N S,Liu B,et al. 2021a. Analysis on prediction skills of S2S Models for extreme precipitation during flood season in Sichuan province. Meteor Mon,47(5):586-600 (in Chinese) 庞轶舒,周斌,祝从文等. 2021b. 西南夏季降水多因子降维客观预测方法研究. 大气科学,45(3):471-486Pang Y S,Zhou B,Zhu C W,et al. 2021b. Multifactor descending dimension method of objective forecast for summer precipitation in Southwest China. Chinese J Atmos Sci,45(3):471-486 (in Chinese) 邱学兴,王东勇,陈宝峰. 2012. T639模式预报系统误差统计和订正方法研究. 气象,38(5):526-532 doi: 10.7519/j.issn.1000-0526.2012.05.002Qiu X X,Wang D Y,Chen B F. 2012. The statistics and correction of T639 model forecast system errors. Meteor Mon,38(5):526-532 (in Chinese) doi: 10.7519/j.issn.1000-0526.2012.05.002 任宏利,丑纪范. 2005. 统计-动力相结合的相似误差订正法. 气象学报,63(6):988-993 doi: 10.3321/j.issn:0577-6619.2005.06.015Ren H L,Chou J F. 2005. Analogue correction method of errors by combining both statistical and dynamical methods together. Acta Meteor Sinica,63(6):988-993 (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.06.015 苏海晶,王启光,杨杰等. 2013. 基于奇异值分解对中国夏季降水模式误差订正的研究. 物理学报,62(10):109202 doi: 10.7498/aps.62.109202Su H J,Wang Q G,Yang J,et al. 2013. Error correction on summer model precipitation of China based on the singular value decomposition. Acta Phys Sinica,62(10):109202 (in Chinese) doi: 10.7498/aps.62.109202 孙丞虎,李维京,任宏利等. 2006. 一个ENSO动力-相似误差订正模式及其后报初检验. 大气科学,30(5):965-976 doi: 10.3878/j.issn.1006-9895.2006.05.24Sun C H,Li W J,Ren H L,et al. 2006. A dynamic-analogue error correction model for ENSO prediction and its initial hindcast verification. Chinese J Atmos Sci,30(5):965-976 (in Chinese) doi: 10.3878/j.issn.1006-9895.2006.05.24 孙国武,信飞,陈伯民等. 2008. 低频天气图预报方法. 高原气象,27(S1):64-68Sun G W,Xin F,Chen B M,et al. 2008. A predicting method on the low-frequency synoptic weather map. Plateau Meteor,27(S1):64-68 (in Chinese) 孙昭萱,马振峰,杨小波等. 2016. 低频天气图方法在四川盆地夏季延伸期强降水预报中的应用. 高原山地气象研究,36(1):20-26Sun Z X,Ma Z F,Yang X B,et al. 2016. Extended-range forecast of summer strong precipitation by the method of the low-frequency synoptic map in Sichuan basin. Plateau Mountain Meteor Res,36(1):20-26 (in Chinese) 唐红玉,李永华,何慧根等. 2017. 前期环流相似法在重庆延伸期天气过程预报中的应用. 气象科技,45(1):72-78Tang H Y,Li Y H,He H G,et al. 2017. Application of analogous precursor circulation anomaly method to extended-range weather forecast in Chongqing. Meteor Sci Technol,45(1):72-78 (in Chinese) 王婧,徐枝芳,范广洲等. 2015. GRAPES-RAFS系统2 m温度偏差订正方法研究. 气象,41(6):719-726 doi: 10.7519/j.issn.1000-0526.2015.06.006Wang J,Xu Z F,Fan G Z,et al. 2015. Study on bias correction for the 2 m temperature forecast of GRAPES-RAFS. Meteor Mon,41(6):719-726 (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.06.006 温克刚,詹兆渝. 2006. 中国气象灾害大典-四川卷. 北京:气象出版社,1-7Wen K G,Zhan Z Y. 2006. China Meteorological Disaster Ceremony (Sichuan Volume). Beijing:China Meteorological Press,1-7 (in Chinese) 杨杰,赵俊虎,郑志海等. 2012. 华北汛期降水多因子相似订正方案与预报试验. 大气科学,36(1):11-22 doi: 10.3878/j.issn.1006-9895.2012.01.02Yang J,Zhao J H,Zheng Z H,et al. 2012. Estimating the prediction errors of dynamical climate model on the basis of prophase key factors in North China. Chinese J Atmos Sci,36(1):11-22 (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.01.02 尹姗,李勇,马杰等. 2020. 延伸期温度预报误差订正技术初探. 气象,46(3):412-419 doi: 10.7519/j.issn.10000526.2020.03.012Yin S,Li Y,Ma J,et al. 2020. Preliminary study on bias correction for the extended-range temperature forecast. Meteor Mon,46(3):412-419 (in Chinese) doi: 10.7519/j.issn.10000526.2020.03.012 章大全,陈丽娟. 2016. 基于DERF2.0的月平均温度概率订正预报. 大气科学,40(5):1022-1032Zhang D Q,Chen L J. 2016. Bias correction in monthly means of temperature predictions of the dynamic extended range forecast model. Chinese J Atmos Sci,40(5):1022-1032 (in Chinese) 郑然,刘嘉慧敏,马振峰. 2019. 年际增量方法在西南夏季降水预测中的应用. 气象学报,77(3):489-496 doi: 10.11676/qxxb2019.027Zheng R,Liu J H M,Ma Z F. 2019. Application of an interannual increment method for summer precipitation forecast in Southwest China. Acta Meteor Sinica,77(3):489-496 (in Chinese) doi: 10.11676/qxxb2019.027 Cavalcanti I F A,Barreto N J C,Alvarez M S,et al. 2021. Teleconnection patterns in the Southern hemisphere represented by ECMWF and NCEP S2S project models and influences on South America precipitation. Meteor Appl,28(4):e2011 De Andrade F M,Coelho C A S,Cavalcanti I F A. 2019. Global precipitation hindcast quality assessment of the subseasonal to seasonal (S2S) predic-tion project models. Climate Dyn,52(9-10):5451-5475 doi: 10.1007/s00382-018-4457-z Déqué M. 2007. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario:Model results and statistical correction according to observed values. Global and Planetary Change,57(1-2):16-26 doi: 10.1016/j.gloplacha.2006.11.030 Ford T W,Dirmeyer P A,Benson D O. 2018. Evaluation of heat wave forecasts seamlessly across subseasonal timescales. npj Climate and Atmos Sci,1(1):20 doi: 10.1038/s41612-018-0027-7 Hagedorn R,Hamill T M,Whitaker J S. 2008. Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part Ⅰ:Two-meter temperatures. Mon Wea Rev,136(7):2608-2619 doi: 10.1175/2007MWR2410.1 Hudson D,Marshall A G,Alves O. 2011. Intraseasonal forecasting of the 2009 summer and winter Australian heat waves using POAMA. Wea Forecasting,26(3):257-279 doi: 10.1175/WAF-D-10-05041 Jie W H,Vitart F,Wu T W,et al. 2017. Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) data-base. Quart J Roy Meteor Soc,143(706):2282-2295 doi: 10.1002/qj.3085 Jolliffe I T, Stephenson D B. 2003. Forecast Verification: A Practitioner's Guide in Atmospheric Science. New York: John Wiley & Sons Inc., 213pp Liang P,Lin H. 2018. Sub-seasonal prediction over East Asia during boreal summer using the ECCC monthly forecasting system. Climate Dyn,50(3):1007-1022 Maraun D. 2013. Bias correction,quantile mapping,and downscaling:Revisiting the inflation issue. J Climate,26(6):2137-2143 doi: 10.1175/JCLI-D-12-00821.1 Marshall A G,Hendon H H. 2015. Subseasonal prediction of Australian summer monsoon anomalies. Geophys Res Lett,42(24):10913-10919 doi: 10.1002/2015GL067086 Morss R E,Demuth J L,Lazo J K. 2008. Communicating uncertainty in weather forecasts:A survey of the U. S. Public. Wea Forecasting,23(5):974-991 doi: 10.1175/2008WAF2007088.1 Olaniyan E,Adefisan E A,Balogun A A,et al. 2019. The influence of global climate drivers on monsoon onset variability in Nigeria using S2S models. Model Earth Syst Environ,5(4):1405-1428 doi: 10.1007/s40808-019-00606-x Osman M,Alvarez M S. 2018. Subseasonal prediction of the heat wave of December 2013 in Southern South America by the POAMA and BCC-CPS models. Climate Dyn,50(1-2):67-81 doi: 10.1007/s00382-017-3582-4 Panofsky H A,Brier G W. 1968. Some Applications of Statistics to Meteorology. Penn State:Pennsylvania State College,224-225 Rao J,Garfinkel C I,Chen H S,et al. 2019. The 2019 new year stratospheric sudden warming and its real-time predictions in multiple S2S models. J Geophys Res,124(21):11155-11174 doi: 10.1029/2019JD030826 Stensrud D J,Yussouf N. 2005. Bias-corrected short-range ensemble forecasts of near surface variables. Meteor Appl,12(3):217-230 doi: 10.1017/S135048270500174X Vigaud N,Robertson A W,Tippett M K,et al. 2017. Subseasonal predictability of boreal summer monsoon rainfall from ensemble forecasts. Front Environ Sci,5:67 doi: 10.3389/fenvs.2017.00067 Vitart F,Robertson A W,Anderson D L T. 2012. Subseasonal to seasonal prediction project:Bridging the gap between weather and climate. WMO Bulletin,61(2):23-28 Vitart F,Ardilouze C,Bonet A,et al. 2017. The subseasonal to seasonal (S2S) prediction project database. Bull Amer Meteor Soc,98(1):163-173 doi: 10.1175/BAMS-D-16-0017.1 Vitart F,Robertson A W. 2018. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Clim Atmos Sci,1(1):3 doi: 10.1038/s41612-018-0013-0 White C J,Carlsen H,Robertson A W,et al. 2017. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor Appl,24(3):315-325 doi: 10.1002/met.1654 Xie J H,Yu J H,Chen H S,et al. 2020. Sources of subseasonal prediction skill for heatwaves over the Yangtze River Basin revealed from three S2S models. Adv Atmos Sci,37(12):1435-1450 doi: 10.1007/s00376-020-0144-1 Zeng Q C,Zhang B L,Yuan C G,et al. 1994. A note on some methods suitable for verifying and correcting the prediction of climatic anomaly. Adv Atmos Sci,11(2):121-127 doi: 10.1007/BF02666540 Zhou Y,Yang B,Chen H S,et al. 2019. Effects of the Madden-Julian Oscillation on 2-m air temperature prediction over China during boreal winter in the S2S database. Climate Dyn,52(11):6671-6689 doi: 10.1007/s00382-018-4538-z Zhu H C,Chen H S,Zhou Y,et al. 2019. Evaluation of the subseasonal forecast skill of surface soil moisture in the S2S database. Atmos Oceanic Sci Lett,12(6):467-474 doi: 10.1080/16742834.2019.1663123 -