Assessment and merged optimization of multi-source winter precipitation products over northern China
-
摘要: 为了考察不同来源降水产品在中国北方冬季(特别是固态降水)的精度和可用性,优化融合降水产品质量,利用2019年12月—2020年2月美国CMORPH和IMERGE卫星反演降水、日本GSMaP、中国气象局雷达定量估测降水(MOC-QPE)、CMA-MESO模式预报以及地面观测插值等不同来源分析的降水产品,以地面站观测逐小时降水量数据为基准,从KGE评分、相关系数、平均误差和均方根误差等精度统计指标以及命中率(FOD)、虚警率(FAR)和TS评分等降水事件发生角度开展评估,结果表明:中国区域单源降水产品中地面插值分析产品对冬季降水描述精度最高也最稳定,但存在明显的系统偏低;其次是MOC-QPE和IMERG卫星产品,对中国北方偏南部地区的降水有一定的描述能力,但对北方高纬度地区固态降水的反映能力较差;卫星产品中IMERG精度最高,CMORPH则基本没有反演能力;CMA-MSEO模式产品虽然误差较大但与地面站观测的降水特别是固态降水存在较高相关,明显优于雷达和IMERG、GSMaP等卫星产品。采用BMA技术融合雷达、模式、卫星降水形成优化背景场,评估逐步引入不同的数据源对融合降水在冬季的精度影响,引入IMERG卫星和CMA-MESO模式产品均能提升高分辨率融合产品的质量,其中模式产品的改进效果最显著。Abstract: Based on the data between December 2019 and February 2020, multi-source precipitation products such as CMORPH, IMERG, GSMaP satellite retrieved precipitation, quanity precipitation estimate (MOC-QPE), CMA-MESO model forecast, and grid analysis product based on gauges etc. are assessed. The statistical error indicates that the grid analysis dataset based on gauges is the best and robust among all the precipitation products. The MOC-QPE and IMERG are better in the southern area of northern China but worse in high-latitude area, especially for solid precipitation. IMERG is the best one of satellite products, while CMORPH is the worst in winter over northern China. CMA-MESO product has a high correlation with gauged observations, higher than satellite and radar products, and is valuable for merge analysis. Based on BMA method, the MOC-QPE, IMERG, and CMA-MESO are gradually added to and analyzed in merged products. Results indicate that both IMERG and CMA-MESO can improve the winter precipitation, but CMA-MESO has the largest contribution to the enhancement of the merge analysis accuracy.
-
图 3 不同来源降水产品检验站KGE值的空间分布 (a. GGA,b. MOC-QPE,c.IMERG,d. GSMaP,e. CMORPH,f. CMA-MESO,g. 融合试验1,h. 融合试验2,i. 融合试验3)
Figure 3. Spatial distributions of KGE values from different precipitation products (a. GGA,b. MOC-QPE,c. IMERG,d. GSMaP,e. CMORPH,f. CMA-MESO,g. Merge_test 1,h. Merge_test 2,i. Merge_test 3)
表 1 降水产品列表
Table 1. List of precipitation products
产品(文中简称) 来源机构 时空分辨率 数据源 时效(滞后) 地面降水网格分析产品(GGA) 中国气象局气象信息中心 1 h/0.05°×0.05° 地面约4万个考核自动站观测 5 min 雷达定量降水估计产品(MOC-QPE) 中国气象局气象探测中心 1 h/0.01°×0.01° 全国200多部雷达组网 10 min CMA-MESO降水预报产品(CMA-MESO) 中国气象局国家气象中心 1 h/0.03°×0.03° CMA-MESO模式预报 0 min GSMaP卫星降水近实时(NRT)产品(GSMaP) 日本JAXA 1 h/0.1°×0.1° 卫星(多卫星集成) 3.5 h IMERG卫星Lately降水(IMERG) 美国NASA 30 min /0.1°×0.1° 卫星(多卫星集成) 14.5 h CMORPH卫星降水(CMORPH) 美国NOAA/CPC 30 min /0.073°×0.073° 卫星(多卫星集成) 20 h 表 2 数据源优化融合试验方案
Table 2. Optimized merged schemes of different precipitation sources
试验名称 数据源 融合分析技术 试验1 地面观测、雷达 PDF+OI 试验2 地面观测、雷达、IMERG PDF+BMA+OI 试验3 地面观测、雷达、IMERG、
CMA-MESO模式PDF+BMA+OI 表 3 2019年12月—2020年2月中国北方地区各类降水产品的误差统计
Table 3. Statistical errors of different precipitation products over northern China from December 2019 to February 2020
产品 相关系数 均方根误差(mm/h) 相对偏差(%) KGE评分 平均降水率(mm/h) 样本数 GGA 0.624 0.1220 −52.2 0.319 0.0093 469751 CMORPH 0.113 0.2558 −14.4 −0.121 0.0167 GSMaP 0.201 0.3337 −15.0 −0.700 0.0166 IMERG 0.385 0.1804 −15.5 0.298 0.0165 MOC-QPE 0.459 0.2065 −45.7 −0.822 0.0106 CMA-MESO 0.481 0.2531 205.3 −1.154 0.0597 背景场(试验2) 0.555 0.1495 −22.7 0.393 0.0151 背景场(试验3) 0.585 0.1441 −19.3 0.456 0.0158 融合降水(试验1) 0.606 0.1356 −38.8 0.196 0.0120 融合降水(试验2) 0.633 0.1253 −37.0 0.360 0.0123 融合降水(试验3) 0.645 0.1222 −38.0 0.374 0.0121 表 4 不同降水产品在不同KGE值区间的检验站数与总检验站数的占比百分率 (单位:%)
Table 4. KGE values sample percentages of different precipitation products (unit:%)
产品 0.6≤KGE<1.0 0.4≤KGE<1.0 0.2≤KGE<1.0 0.0≤KGE<1.0 GGA 27.5 48.0 59.8 72.5 CMORPH 0.0 0.0 2.0 13.7 GSMaP 2.0 2.0 2.9 11.8 IMERG 2.9 11.8 23.5 44.1 MOC-QPE 5.9 8.8 28.4 50.0 CMA-MESO 4.9 7.8 9.8 12.7 背景场(试验2) 7.8 18.6 38.2 57.8 背景场(试验3) 19.6 30.4 51.0 70.6 融合降水(试验1) 21.6 43.1 61.8 73.5 融合降水(试验2) 28.4 45.1 65.7 74.5 融合降水(试验3) 24.5 50.0 68.6 81.4 表 5 不同来源降水产品对固态降水误差统计
Table 5. Statistical errors of solid precipitation from different products over northern China
产品 相关系数 均方根误差(mm/h) 相对偏差 (%) KGE评分 平均降水率(mm/h) 样本数 GGA 0.593 0.0930 −50.4 0.302 0.0072 203909 CMORPH 0.047 0.2139 −29.5 −0.630 0.0102 GSMaP 0.193 0.2143 −46.8 −1.512 0.0077 IMERG 0.259 0.1454 −32.9 −0.008 0.0097 MOC-QPE 0.293 0.1365 −75.5 −2.212 0.0035 CMA-MESO模式 0.515 0.2107 240.7 −1.486 0.0493 背景场(试验2) 0.408 0.1138 −48.4 0.077 0.0075 背景场(试验3) 0.511 0.1043 −41.6 0.261 0.0085 融合降水(试验1) 0.549 0.0980 −56.9 0.061 0.0062 融合降水(试验2) 0.545 0.0980 −50.4 0.230 0.0072 融合降水(试验3) 0.615 0.0911 −47.3 0.341 0.0076 -
李俊,杜钧,陈超君. 2014. 降水偏差订正的频率(或面积)匹配方法介绍和分析. 气象,40(5):580-588 doi: 10.7519/j.issn.1000-0526.2014.05.008Li J,Du J,Chen C J. 2014. Introduction and analysis to frequency or area matching method applied to precipitation forecast bias correction. Meteor Mon,40(5):580-588 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.05.008 潘旸,谷军霞,宇婧婧等. 2018. 中国区域高分辨率多源降水观测产品的融合方法试验. 气象学报,76(5):755-766Pan Y,Gu J X,Yu J J,et al. 2018. Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor Sinica,76(5):755-766 (in Chinese) 沈艳,潘旸,徐宾等. 2012. 最优插值法在对中国自动站降水量空间分析中的参数优化. 成都信息工程学院学报,27(2):219-224 doi: 10.16836/j.cnki.jcuit.2012.02.016Shen Y,Pan Y,Xu B,et al. 2012. Parameter improvements of hourly automatic weather stations precipitation analysis by optimal interpolation over China. J Chengdu Univ Inf Technol,27(2):219-224 (in Chinese) doi: 10.16836/j.cnki.jcuit.2012.02.016 孙靖,程光光,张小玲. 2015. 一种改进的数值预报降水偏差订正方法及应用. 应用气象学报,26(2):173-184 doi: 10.11898/1001-7313.20150205Sun J,Cheng G G,Zhang X L. 2015. An improved bias removed method for precipitation prediction and its application. J Appl Meteor Sci,26(2):173-184 (in Chinese) doi: 10.11898/1001-7313.20150205 谢漪云,王建捷. 2021. GRAPES千米尺度模式在西南复杂地形区降水预报偏差与成因初探. 气象学报,79(5):732-749 doi: 10.11676/qxxb2021.053Xie Y Y,Wang J J. 2021. Preliminary study on the deviation and cause of precipitation prediction of GRAPES kilometer scale model in southwest complex terrain area. Acta Meteor Sinica,79(5):732-749 (in Chinese) doi: 10.11676/qxxb2021.053 宇婧婧,沈艳,潘旸等. 2013. 概率密度匹配法对中国区域卫星降水资料的改进. 应用气象学报,24(5):544-553 doi: 10.3969/j.issn.1001-7313.2013.05.004Yu J J,Shen Y,Pan Y,et al. 2013. Improvement of satellite-based precipitation estimates over China based on probability density function matching method. J Appl Meteor Sci,24(5):544-553 (in Chinese) doi: 10.3969/j.issn.1001-7313.2013.05.004 Beck H E,Pan M,Roy T,et al. 2019. Daily evaluation of 26 precipitation datasets using stage-Ⅳ gauge-radar data for the CONUS. Hydrol Earth Syst Sci,23(1):207-224 doi: 10.5194/hess-23-207-2019 Bhuiyan M A E,Nikolopoulos E I,Anagnostou E N. 2019. Machine learning-based blending of satellite and reanalysis precipitation datasets:A multiregional tropical complex terrain evaluation. J Hydrometeorol,20(11):2147-2161 doi: 10.1175/JHM-D-19-0073.1 Cao Q,Painter T H,Currier W R,et al. 2018. Estimation of precipitation over the OLYMPEX domain during winter 2015/16. J Hydrometeorol,19(1):143-160 doi: 10.1175/JHM-D-17-0076.1 Derin Y,Anagnostou E,Berne A,et al. 2016. Multiregional satellite precipitation products evaluation over complex terrain. J Hydrometeorol,17(6):1817-1836 doi: 10.1175/JHM-D-15-0197.1 Ghajarnia N,Liaghat A,Arasthe P D. 2015. Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran. Atmos Res,158-159:50-65 doi: 10.1016/j.atmosres.2015.02.010 Gupta H V,Kling H,Yilmaz K K,et al. 2009. Decomposition of the mean squared error and NSE performance criteria:Implications for improving hydrological modelling. J Hydrol,377(1-2):80-91 doi: 10.1016/j.jhydrol.2009.08.003 Houze Jr R A,Rasmussen K L,Zuluaga M D,et al. 2015. The variable nature of convection in the tropics and subtropics:A legacy of 16 years of the tropical rainfall measuring mission satellite. Rev Geophys,53(3):994-1021 doi: 10.1002/2015RG000488 Huffman G J, Bolvin D T, Braithwaite D, et al. 2015. NASA global precipitation measurement (GPM) integrated multi-satellitE retrievals for GPM (IMERG). Washington: NASA Joyce R J,Janowiak J E,Arkin P A,et al. 2004. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol,5(3):487-503 doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 Joyce R J,Xie P P. 2011. Kalman filter-based CMORPH. J Hydrometeorol,12(6):1547-1563 doi: 10.1175/JHM-D-11-022.1 Kling H,Fuchs M,Paulin M. 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol,424-425:264-277 doi: 10.1016/j.jhydrol.2012.01.011 Lundquist J,Hughes M,Gutmann E,et al. 2019. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull Amer Meteor Soc,100(12):2473-2490 doi: 10.1175/BAMS-D-19-0001.1 Ma Y Z,Hong Y,Chen Y,et al. 2018. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J Geophys Res Atmos,123(2):814-834 doi: 10.1002/2017JD026648 Mega T,Ushio,Takahiro M,et al. 2019. Gauge-adjusted global satellite mapping of precipitation. IEEE Trans Geosci Remote Sens,57(4):1928-1935 doi: 10.1109/TGRS.2018.2870199 Otsuka S,Kotsuki S,Miyoshi T. 2016. Nowcasting with data assimilation:A case of global satellite mapping of precipitation. Wea Forecasting,31(5):1409-1416 doi: 10.1175/WAF-D-16-0039.1 Pang Z H,Shi C X,Gu J X,et al. 2021. Assessment of a gauge-radar-satellite merged hourly precipitation product for accurately monitoring the characteristics of the super-strong Meiyu precipitation over the Yangtze River basin in 2020. Remote Sens,13(19):3850 doi: 10.3390/rs13193850 Raftery A E,Gneiting T,Balabdaoui F,et al. 2005. Using Bayesian model averaging to calibrate forecast ensembles. Mon Wea Rev,133(5):1155-1174 doi: 10.1175/MWR2906.1 Shen Y,Zhao P,Pan Y,et al. 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J Geophys Res Atmos,119(6):3063-3075 doi: 10.1002/2013JD020686 Sun Q H,Miao C Y,Duan Q Y,et al. 2018. A review of global precipitation data sets:Data sources,estimation,and intercomparisons. Rev Geophys,56(1):79-107 doi: 10.1002/2017RG000574 Tang G Q,Clark M P,Papalexiou S M,et al. 2021. EMDNA:Ensemble meteorological dataset for north America. Earth System Science Data,13(7):3337-3362 doi: 10.5194/ESSD-13-3337-2021 Ushio T,Sasashige K,Kubota T,et al. 2009. A Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J Meteor Soc Japan Ser II,87A:137-151 doi: 10.2151/jmsj.87A.137 Yin J B,Guo S L,Gu L,et al. 2021. Blending multi-satellite,atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. J Hydrol,593:125878 doi: 10.1016/j.jhydrol.2020.125878 Yong B,Hong Y,Ren L L,et al. 2012. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J Geophys Res Atmos,117(D9):D09108 doi: 10.1029/2011JD017069 -