An application study of merging GNSS/PWV and FY-4A/GIIRS water vapor profiles
-
摘要: 中国新一代地球静止气象卫星风云四号A星(FY-4A)搭载的干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder, GIIRS)以红外高光谱干涉分光方式探测三维大气温湿结构,取得了在静止轨道上探测大气的突破性进展。地基全球导航卫星系统(Global Navigation Satellite System,GNSS)是一种连续监测大气可降水量(Precipitable Water Vapor,PWV)的有效手段,基于2018年6—8月中国地基GNSS站监测的PWV和FY-4A/GIIRS水汽廓线的业务产品以及常规无线电探空资料,开展GNSS/PWV与FY-4A/GIIRS水汽廓线快速融合应用,以提高卫星资料反演大气水汽廓线的精度。结果表明:与常规无线电探空相比,FY-4A/GIIRS水汽廓线产品在大气低层均方根误差(Root Mean Square Error,RMSE)为4.5 g/kg,700 hPa为2.4 g/kg,500 hPa以上因水汽含量较低RSME小于1.5 g/kg。GNSS/PWV与FY-4A/GIIRS水汽廓线融合后,FY-4A/GIIRS水汽廓线误差整层RMSE减小20%,从近地层到600 hPa RMSE平均减小20%—25%,尤其是850—700 hPa改善最明显,极大改善了卫星水汽反演资料的可用性。对一次多系统影响的暴雨天气过程应用分析表明,GNSS/PWV和FY-4A/GIIRS融合产品可获得高时、空密度的大气水汽廓线,对强降水的临近预报有非常重要的支撑作用。Abstract: The hyperspectral data from the Geostationary Interferometric Infrared Sounder (GIIRS) of the new-generation geostationary meteorological satellite FY-4A can be used to detect three-dimensional structure of atmosphere temperature and humidity by means of infrared hyperspectral interference spectroscopy, and a breakthrough has been made in detecting the atmosphere in geostationary orbit. Precipitable water vapor (PWV) from ground-based Global Navigation Satellite System (GNSS) is an effective means for continuous monitoring of atmospheric water vapor. In order to improve the reliability of water vapor from FY-4A hyperspectral sounder data, the GNSS/PWV, the atmospheric water vapor profiles retrieved by FY-4A/GIIRS and conventional radiosonde data from June to August in 2018 are analyzed. The high-precision atmospheric water vapor data monitored by GNSS and the GNSS/PWV and FY-4A/GIIRS water vapor profiles are rapidly merged to improve the accuracy of satellite retrievals of atmospheric water vapor profile. The results show that compared with conventional radiosonde data, the RMSE of the real-time product for atmospheric profile retrievals of FY-4A/GIIRS is 4.5 g/kg in the lower atmosphere, 2.4 g/kg at 700 hPa, and less than 1.5 g/kg above 500 hPa due to less water vapor content. By merging GNSS/PWV and water vapor profiles of FY-4A/GIIRS, the root mean square error of the whole layer is reduced by about 20%, and the root mean square error from near the surface to 600 hPa is reduced by 20%—25%, especially between 850 hPa and 700 hPa. The merging method can greatly improve the availability of satellite retrieval data. Through the application analysis of a rainstorm process with multiple system effects, it is found that the merging of GNSS/PWV and FY-4A/GIIRS can obtain atmospheric water vapor profiles with high spatial and temporal resolutions, which play a very important role in the nowcast of heavy rainfall.
-
Key words:
- Atmospheric profile /
- Merging /
- GNSS /
- PWV /
- FY-4A /
- Hyperspectral
-
图 4 水汽廓线融合效果检验 (08和20为观测时间;a. 融合前后均方根误差 (RMSE为融合前,RMSE merged为融合后),b. 融合后相对误差 (MRE为融合前,MRE merged为融合后))
Figure 4. Accuracy evaluation of updated specific humidity profiles with merging method (08 and 20 represent observation time;a. RMSEs before and after merging (RMSE merged is the RSME after merging),b. mean relative errors before and after merging (MRE merged is the MRE after merging))
图 6 融合前后误差概率分布 (横坐标表示RMSE比例,stdev1和stdev2分别代表融合前后标准偏差统计;a. 925 hPa, b. 850 hPa,c. 700 hPa,d. 500 hPa)
Figure 6. Bias PDFs before and after merging (x-axis represents the RMSE ratio at corresponding height,stdev1 and stdev2 represent the standard deviations before and after merging,respectively;a. 925 hPa,b. 850 hPa, c. 700 hPa,b. 500 hPa)
图 8 2018年8月15日水汽融合比湿 (色阶) 与融合后水汽增量场 (等值线) (红色方框为暴雨发生的区域;单位:g/kg;a. 08时700 hPa,b. 14时700 hPa,c. 08时850 hPa,d. 14时850 hPa)
Figure 8. Specific humidity after merging (shaded) and increment field (contours) on 15 August 2018 (the red box shows the rainstorm area,unit:g/kg;a. 700 hPa at 08:00 BT,b. 700 hPa at 14:00 BT,c. 850 hPa at 08:00 BT,d. 850 hPa at 14:00 BT)
图 10 江淮地区水汽廓线融合效果 (a. 融合前后均方根误差 (RMSE为融合前,RMSE merged为融合后),b. 融合后相对误差 (MRE为融合前,MRE merged为融合后))
Figure 10. Accuracy evaluation of updated specific humidity profiles with merging method in Jianghuai area (a. RMSE before and after merging (RMSE merged is the RSME after merging),b. mean relative errors before and after merging (MRE merged is the MRE after merging))
-
鲍艳松,汪自军,陈强等. 2017. FY-4A星GIIRS大气温度廓线反演模拟试验研究. 上海航天,34(4):28-37 doi: 10.19328/j.cnki.1006-1630.2017.04.004Bao Y S,Wang Z J,Chen Q,et al. 2017. Preliminary study on atmospheric temperature profiles retrieval from GIIRS based on FY-4A satellite. Aerosp Shanghai,34(4):28-37 (in Chinese) doi: 10.19328/j.cnki.1006-1630.2017.04.004 曹云昌,方宗义,夏青等. 2006. 中国地基GPS气象应用站网建设展望. 气象,32(11):42-47 doi: 10.3969/j.issn.1000-0526.2006.11.007Cao Y C,Fang Z Y,Xia Q,et al. 2006. Prospect of meteorological application network on the ground-based GPS in China. Meteor Mon,32(11):42-47 (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.11.007 丁金才,叶其欣,马晓星等. 2006. 区域GPS气象网站点合理布设的几点依据. 气象,32(2):34-39 doi: 10.3969/j.issn.1000-0526.2006.02.007Ding J C,Ye Q X,Ma X X,et al. 2006. Some bases of reasonable distribution of GPS stations within an area GPS/MET network. Meteor Mon,32(2):34-39 (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.02.007 丁金才. 2009. GPS气象学及其应用. 北京: 气象出版社, 39-44.Ding J C. 2009. GPS Meteorology and Its Application. Beijing: China Meteorological Press, 39-44 (in Chinese) 杜明斌,尹球,刘敏等. 2013. 地基GPS/MET探测水汽等相关参数精度分析. 大气与环境光学学报,8(2):138-145 doi: 10.3969/j.issn.1673-6141.2013.02.008Du M B,Yin Q,Liu M,et al. 2013. Analysis of ground-based GPS/MET inversion precision of water vapor and relative parameters. J Atmos Envir Opt,8(2):138-145 (in Chinese) doi: 10.3969/j.issn.1673-6141.2013.02.008 顾雅茹,刘延安,刘朝顺等. 2018. 高光谱红外探测仪温湿度廓线在华东地区的真实性检验. 华东师范大学学报(自然科学版),(3):146-156 doi: 10.3969/j.issn.1000-5641.2018.03.016Gu Y R,Liu Y A,Liu C S,et al. 2018. Validation of temperature and relative humidity profiles with satellite hyperspectral infrared sounder over East China. J East China Norm Univ (Nat Sci),(3):146-156 (in Chinese) doi: 10.3969/j.issn.1000-5641.2018.03.016 胡姮,曹云昌,尹聪等. 2018. 青藏高原大气可降水量单站观测对比分析. 气象学报,76(6):1029-1039 doi: 10.11676/qxxb2018.055Hu H,Cao Y C,Yin C,et al. 2018. A comparative analysis of precipitable water vapor in the Tibetan plateau. Acta Meteor Sinica,76(6):1029-1039 (in Chinese) doi: 10.11676/qxxb2018.055 胡姮,曹云昌,梁宏. 2019. L波段探空观测偏差分析及订正算法研究. 气象,45(4):511-521 doi: 10.7519/j.issn.1000-0526.2019.04.006Hu H,Cao Y C,Liang H. 2019. Systematic errors and their calibrations for precipitable water vapor of L-band radiosonde. Meteor Mon,45(4):511-521 (in Chinese) doi: 10.7519/j.issn.1000-0526.2019.04.006 华建文,毛建华. 2018. “风云四号”气象卫星大气垂直探测仪. 科学,70(1):24-29Hua J W,Mao J H. 2018. Geostationary interferometric-type infrared sounder (GIIRS) on Fengyun No. 4 metrological satellite. Science,70(1):24-29 (in Chinese) 梁宏,曹云昌,梁静舒等. 2020. 地基GNSS遥感探测气象应用. 中国地震,36(4):744-755Liang H,Cao Y C,Liang J S,et al. 2020. A review of the ground-based GNSS remote sensing in meteorological applications. Earthquake Res China,36(4):744-755 (in Chinese) 陆其峰,周方,漆成莉等. 2019. FY-3D星红外高光谱大气探测仪的在轨光谱精度评估. 光学精密工程,27(10):2105-2115 doi: 10.3788/OPE.20192710.2105Lu Q F,Zhou F,Qi C L,et al. 2019. Spectral performance evaluation of high-spectral resolution infrared atmospheric sounder onboard FY-3D. Opt Precis Eng,27(10):2105-2115 (in Chinese) doi: 10.3788/OPE.20192710.2105 万蓉,郑国光. 2008. 地基GPS在暴雨预报中的应用进展. 气象科学,28(6):697-702 doi: 10.3969/j.issn.1009-0827.2008.06.019Wan R,Zheng G G. 2008. Advances in the application of ground based GPS data to rainstorm forecast and nowcasting. Scientia Meteor Sinica,28(6):697-702 (in Chinese) doi: 10.3969/j.issn.1009-0827.2008.06.019 杨军,许健民,董超华. 2011. 风云气象卫星40年:国际背景下的发展足迹. 气象科技进展,1(1):6-13,24Yang J,Xu J M,Dong C H. 2011. 40th anniversary of Fengyun meteorological satellites:Evolution in view of the international development. Adv Meteor Sci Technol,1(1):6-13,24 (in Chinese) 杨天杭,胡秀清,徐寒列等. 2019. 基于交叉比对的风云三号D星红外高光谱大气探测仪辐射定标性能评估. 光学学报,39(11):1130003 doi: 10.3788/AOS201939.1130003Yang T H,Hu X Q,Xu H L,et al. 2019. Radiation calibration accuracy assessment of FY-3D hyperspectral infrared atmospheric sounder based on inter-comparison. Acta Opt Sinica,39(11):1130003 (in Chinese) doi: 10.3788/AOS201939.1130003 张志清,陆风,方翔等. 2017. FY-4卫星应用和发展. 上海航天,34(4):8-19 doi: 10.19328/j.cnki.1006-1630.2017.04.002Zhang Z Q,Lu F,Fang X,et al. 2017. Application and development of FY-4 meteorological satellite. Aerosp Shanghai,34(4):8-19 (in Chinese) doi: 10.19328/j.cnki.1006-1630.2017.04.002 中国气象局. 2010. 常规高空气象观测业务规范. 北京: 气象出版社, 4-24.China Meteorological Administration. 2010. Operational Specification for Conventional High Altitude Meteorological Observation. Beijing: China Meteorological Press, 4-24(in Chinese) 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2017. 地面气象观测规范 空气湿度和温度(GB/T 35226-2017). 北京: 中国标准出版社, 9-11.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. 2017. Specifications for Surface Meteorological Observation-Air Temperature and Humidity (GB/T 35226-2017). Beijing: China Standard Press, 9-11(in Chinese) Cressman G P. 1959. An operational objective analysis system. Mon Wea Rev,87(10):367-374 doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2 Dai A G,Wang J H,Ware R H,et al. 2002. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J Geophys Res Atmos,107(D10):4090 Duan J P,Bevis M,Fang P,et al. 1996. GPS meteorology:Direct estimation of the absolute value of precipitable water. J Appl Meteor Climatol,35(6):830-838 doi: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2 Gambacorta A, Barnet C, Wolf W, et al. 2012. The NOAA unique CrIS/ATMS processing system (NUCAPS): First light results∥ITSC-18 (International TOVS Study Conferences). Toulouse, France: Interna-tional TOVS Working Group, 1-9 Gambacorta A,Barnet C D. 2018. Atmospheric soundings from hyperspectral satellite observations. Compr Remote Sens,7:64-96 Kuo Y H,Guo Y R,Westwater E R. 1993. Assimilation of precipitable water measurements into a mesoscale numerical model. Mon Wea Rev,121(4):1215-1238 doi: 10.1175/1520-0493(1993)121<1215:AOPWMI>2.0.CO;2 Kuo Y H,Schreiner W S,Wang J,et al. 2005. Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett,32(5):L05817 Lee S W,Kouba J,Schutz B,et al. 2013. Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geod,87(10-12):923-934 doi: 10.1007/s00190-013-0655-y Li J,Li Z L,Wang P,et al. 2017. An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy-sky conditions. J Geophys Res Atmos,122(14):7600-7613 doi: 10.1002/2016JD026273 Liang H,Cao Y C,Wan X M,et al. 2015. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod Geodyn,6(2):135-142 doi: 10.1016/j.geog.2015.03.001 Liou Y A,Teng Y T,Van Hove T,et al. 2001. Comparison of precipitable water observations in the near tropics by GPS,microwave radiometer,and radiosondes. J Appl Meteor Climatol,40(1):5-15 doi: 10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2 Min M,Wu C Q,Li C,et al. 2017. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites:Fengyun-4 series. J Meteor Res,31(4):708-719 doi: 10.1007/s13351-017-6161-z Nalli N R,Gambacorta A,Liu Q H,et al. 2018. Validation of atmospheric profile retrievals from the SNPP NOAA-unique combined atmospheric processing system. Part 1:Temperature and moisture. IEEE Trans Geosci Remote Sens,56(1):180-190 doi: 10.1109/TGRS.2017.2744558 Ohtani R,Naito I. 2000. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J Geophys Res Atmos,105(D22):26917-26929 doi: 10.1029/2000JD900362 Rocken C,Van Hove T,Johnson J,et al. 1995. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology. J Atmos Ocean Technol,12(3):468-478 doi: 10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2 Schneider M,Hase F. 2011. Optimal estimation of tropospheric H2O and δD with IASI/METOP. Atmos Chem Phys,11(21):11207-11220 doi: 10.5194/acp-11-11207-2011 Vaquero-Martíne J,Antón M. 2021. Review on the role of GNSS meteorology in monitoring water vapor for atmospheric physics. Remote Sens,13(12):2287 doi: 10.3390/rs13122287 Wulfmeyer V,Hardesty R M,Turner D D,et al. 2015. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev Geophys,53(3):819-895 doi: 10.1002/2014RG000476 Xue Q M,Guan L,Shi X N. 2022. One-dimensional variational retrieval of temperature and humidity profiles from the FY4A GIIRS. Adv Atmos Sci,39(3):471-486 doi: 10.1007/s00376-021-1032-z Yang J,Zhang Z Q,Wei C Y,et al. 2017. Introducing the new generation of Chinese geostationary weather satellites,Fengyun-4. Bull Amer Meteor Soc,98(8):1637-1658 doi: 10.1175/BAMS-D-16-0065.1 Zhang C M,Gu M J,Hu Y,et al. 2021. A study on the retrieval of temperature and humidity profiles based on FY-3D/HIRAS infrared hyperspectral data. Remote Sens,13(11):2157 doi: 10.3390/rs13112157 -