留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GNSS/PWV与风云四号A星GIIRS水汽廓线融合应用研究

杜明斌 梁宏 吴春强 曹云昌 郭巍 唐玉琪 岳彩军

杜明斌,梁宏,吴春强,曹云昌,郭巍,唐玉琪,岳彩军. 2022. GNSS/PWV与风云四号A星GIIRS水汽廓线融合应用研究. 气象学报,80(6):940-952 doi: 10.11676/qxxb2022.070
引用本文: 杜明斌,梁宏,吴春强,曹云昌,郭巍,唐玉琪,岳彩军. 2022. GNSS/PWV与风云四号A星GIIRS水汽廓线融合应用研究. 气象学报,80(6):940-952 doi: 10.11676/qxxb2022.070
Du Mingbin, Liang Hong, Wu Chunqiang, Cao Yunchang, Guo Wei, Tang Yuqi, Yue Caijun. 2022. An application study of merging GNSS/PWV and FY-4A/GIIRS water vapor profiles. Acta Meteorologica Sinica, 80(6):940-952 doi: 10.11676/qxxb2022.070
Citation: Du Mingbin, Liang Hong, Wu Chunqiang, Cao Yunchang, Guo Wei, Tang Yuqi, Yue Caijun. 2022. An application study of merging GNSS/PWV and FY-4A/GIIRS water vapor profiles. Acta Meteorologica Sinica, 80(6):940-952 doi: 10.11676/qxxb2022.070

GNSS/PWV与风云四号A星GIIRS水汽廓线融合应用研究

doi: 10.11676/qxxb2022.070
基金项目: 国家自然科学基金项目(41961144015)、上海市科委科研计划项目(19dz1200103)、广西科技计划项目(桂科AB21075005)
详细信息
    作者简介:

    杜明斌,主要从事GNSS气象和卫星遥感应用研究。E-mail:nyicer@hotmail.com

  • 中图分类号: P435

An application study of merging GNSS/PWV and FY-4A/GIIRS water vapor profiles

  • 摘要: 中国新一代地球静止气象卫星风云四号A星(FY-4A)搭载的干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder, GIIRS)以红外高光谱干涉分光方式探测三维大气温湿结构,取得了在静止轨道上探测大气的突破性进展。地基全球导航卫星系统(Global Navigation Satellite System,GNSS)是一种连续监测大气可降水量(Precipitable Water Vapor,PWV)的有效手段,基于2018年6—8月中国地基GNSS站监测的PWV和FY-4A/GIIRS水汽廓线的业务产品以及常规无线电探空资料,开展GNSS/PWV与FY-4A/GIIRS水汽廓线快速融合应用,以提高卫星资料反演大气水汽廓线的精度。结果表明:与常规无线电探空相比,FY-4A/GIIRS水汽廓线产品在大气低层均方根误差(Root Mean Square Error,RMSE)为4.5 g/kg,700 hPa为2.4 g/kg,500 hPa以上因水汽含量较低RSME小于1.5 g/kg。GNSS/PWV与FY-4A/GIIRS水汽廓线融合后,FY-4A/GIIRS水汽廓线误差整层RMSE减小20%,从近地层到600 hPa RMSE平均减小20%—25%,尤其是850—700 hPa改善最明显,极大改善了卫星水汽反演资料的可用性。对一次多系统影响的暴雨天气过程应用分析表明,GNSS/PWV和FY-4A/GIIRS融合产品可获得高时、空密度的大气水汽廓线,对强降水的临近预报有非常重要的支撑作用。

     

  • 图 1  GNSS气象站与无线电探空站匹配后分布示意

    Figure 1.  Distribution of matched GNSS sites and radiosondes

    图 2  融合方法和精度检验流程

    Figure 2.  Flowchart of merging method and accuracy evaluation

    图 3  风云四号A星GIIRS比湿 (q) 廓线反演精度检验 (08和20为观测时间;a. 偏差、均方根误差和比湿廓线均值,b. 相对误差与样本数目)

    Figure 3.  Accuracy evaluation of specific humidity profiles for FY-4A GIIRS retrievals (08 and 20 represent observation time;a. Bias,RMSEs and mean profiles of specific humidity,b. mean relative errors and sample numbers)

    图 4  水汽廓线融合效果检验 (08和20为观测时间;a. 融合前后均方根误差 (RMSE为融合前,RMSE merged为融合后),b. 融合后相对误差 (MRE为融合前,MRE merged为融合后))

    Figure 4.  Accuracy evaluation of updated specific humidity profiles with merging method (08 and 20 represent observation time;a. RMSEs before and after merging (RMSE merged is the RSME after merging),b. mean relative errors before and after merging (MRE merged is the MRE after merging))

    图 5  水汽廓线融合后均方根误差 (a) 和相对误差 (b) 减少比例 (08和20为观测时间)

    Figure 5.  Reduction ratios of RMSE (a) and (b) after updating specific humidity profile with merging method (08 and 20 represent observation time)

    图 6  融合前后误差概率分布 (横坐标表示RMSE比例,stdev1和stdev2分别代表融合前后标准偏差统计;a. 925 hPa, b. 850 hPa,c. 700 hPa,d. 500 hPa)

    Figure 6.  Bias PDFs before and after merging (x-axis represents the RMSE ratio at corresponding height,stdev1 and stdev2 represent the standard deviations before and after merging,respectively;a. 925 hPa,b. 850 hPa, c. 700 hPa,b. 500 hPa)

    图 7  2018年8月15日08时FY-4A 10.8 μm通道卫星云图

    Figure 7.  FY-4A satellite image of channel 10.8 μm at 08:00 BT 15 August 2018

    图 8  2018年8月15日水汽融合比湿 (色阶) 与融合后水汽增量场 (等值线) (红色方框为暴雨发生的区域;单位:g/kg;a. 08时700 hPa,b. 14时700 hPa,c. 08时850 hPa,d. 14时850 hPa)

    Figure 8.  Specific humidity after merging (shaded) and increment field (contours) on 15 August 2018 (the red box shows the rainstorm area,unit:g/kg;a. 700 hPa at 08:00 BT,b. 700 hPa at 14:00 BT,c. 850 hPa at 08:00 BT,d. 850 hPa at 14:00 BT)

    Continued

    图 9  2018年8月15日08时至16日20时江淮区域平均比湿变化 (a) 与3 h降水时间序列 (b)

    Figure 9.  Average specific humidity (a) and 3 h accumulative rainfall (b) from 08:00 BT 15 August to 20:00 BT 16 August 2018

    图 10  江淮地区水汽廓线融合效果 (a. 融合前后均方根误差 (RMSE为融合前,RMSE merged为融合后),b. 融合后相对误差 (MRE为融合前,MRE merged为融合后))

    Figure 10.  Accuracy evaluation of updated specific humidity profiles with merging method in Jianghuai area (a. RMSE before and after merging (RMSE merged is the RSME after merging),b. mean relative errors before and after merging (MRE merged is the MRE after merging))

  • 鲍艳松,汪自军,陈强等. 2017. FY-4A星GIIRS大气温度廓线反演模拟试验研究. 上海航天,34(4):28-37 doi: 10.19328/j.cnki.1006-1630.2017.04.004

    Bao Y S,Wang Z J,Chen Q,et al. 2017. Preliminary study on atmospheric temperature profiles retrieval from GIIRS based on FY-4A satellite. Aerosp Shanghai,34(4):28-37 (in Chinese) doi: 10.19328/j.cnki.1006-1630.2017.04.004
    曹云昌,方宗义,夏青等. 2006. 中国地基GPS气象应用站网建设展望. 气象,32(11):42-47 doi: 10.3969/j.issn.1000-0526.2006.11.007

    Cao Y C,Fang Z Y,Xia Q,et al. 2006. Prospect of meteorological application network on the ground-based GPS in China. Meteor Mon,32(11):42-47 (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.11.007
    丁金才,叶其欣,马晓星等. 2006. 区域GPS气象网站点合理布设的几点依据. 气象,32(2):34-39 doi: 10.3969/j.issn.1000-0526.2006.02.007

    Ding J C,Ye Q X,Ma X X,et al. 2006. Some bases of reasonable distribution of GPS stations within an area GPS/MET network. Meteor Mon,32(2):34-39 (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.02.007
    丁金才. 2009. GPS气象学及其应用. 北京: 气象出版社, 39-44.

    Ding J C. 2009. GPS Meteorology and Its Application. Beijing: China Meteorological Press, 39-44 (in Chinese)
    杜明斌,尹球,刘敏等. 2013. 地基GPS/MET探测水汽等相关参数精度分析. 大气与环境光学学报,8(2):138-145 doi: 10.3969/j.issn.1673-6141.2013.02.008

    Du M B,Yin Q,Liu M,et al. 2013. Analysis of ground-based GPS/MET inversion precision of water vapor and relative parameters. J Atmos Envir Opt,8(2):138-145 (in Chinese) doi: 10.3969/j.issn.1673-6141.2013.02.008
    顾雅茹,刘延安,刘朝顺等. 2018. 高光谱红外探测仪温湿度廓线在华东地区的真实性检验. 华东师范大学学报(自然科学版),(3):146-156 doi: 10.3969/j.issn.1000-5641.2018.03.016

    Gu Y R,Liu Y A,Liu C S,et al. 2018. Validation of temperature and relative humidity profiles with satellite hyperspectral infrared sounder over East China. J East China Norm Univ (Nat Sci),(3):146-156 (in Chinese) doi: 10.3969/j.issn.1000-5641.2018.03.016
    胡姮,曹云昌,尹聪等. 2018. 青藏高原大气可降水量单站观测对比分析. 气象学报,76(6):1029-1039 doi: 10.11676/qxxb2018.055

    Hu H,Cao Y C,Yin C,et al. 2018. A comparative analysis of precipitable water vapor in the Tibetan plateau. Acta Meteor Sinica,76(6):1029-1039 (in Chinese) doi: 10.11676/qxxb2018.055
    胡姮,曹云昌,梁宏. 2019. L波段探空观测偏差分析及订正算法研究. 气象,45(4):511-521 doi: 10.7519/j.issn.1000-0526.2019.04.006

    Hu H,Cao Y C,Liang H. 2019. Systematic errors and their calibrations for precipitable water vapor of L-band radiosonde. Meteor Mon,45(4):511-521 (in Chinese) doi: 10.7519/j.issn.1000-0526.2019.04.006
    华建文,毛建华. 2018. “风云四号”气象卫星大气垂直探测仪. 科学,70(1):24-29

    Hua J W,Mao J H. 2018. Geostationary interferometric-type infrared sounder (GIIRS) on Fengyun No. 4 metrological satellite. Science,70(1):24-29 (in Chinese)
    梁宏,曹云昌,梁静舒等. 2020. 地基GNSS遥感探测气象应用. 中国地震,36(4):744-755

    Liang H,Cao Y C,Liang J S,et al. 2020. A review of the ground-based GNSS remote sensing in meteorological applications. Earthquake Res China,36(4):744-755 (in Chinese)
    陆其峰,周方,漆成莉等. 2019. FY-3D星红外高光谱大气探测仪的在轨光谱精度评估. 光学精密工程,27(10):2105-2115 doi: 10.3788/OPE.20192710.2105

    Lu Q F,Zhou F,Qi C L,et al. 2019. Spectral performance evaluation of high-spectral resolution infrared atmospheric sounder onboard FY-3D. Opt Precis Eng,27(10):2105-2115 (in Chinese) doi: 10.3788/OPE.20192710.2105
    万蓉,郑国光. 2008. 地基GPS在暴雨预报中的应用进展. 气象科学,28(6):697-702 doi: 10.3969/j.issn.1009-0827.2008.06.019

    Wan R,Zheng G G. 2008. Advances in the application of ground based GPS data to rainstorm forecast and nowcasting. Scientia Meteor Sinica,28(6):697-702 (in Chinese) doi: 10.3969/j.issn.1009-0827.2008.06.019
    杨军,许健民,董超华. 2011. 风云气象卫星40年:国际背景下的发展足迹. 气象科技进展,1(1):6-13,24

    Yang J,Xu J M,Dong C H. 2011. 40th anniversary of Fengyun meteorological satellites:Evolution in view of the international development. Adv Meteor Sci Technol,1(1):6-13,24 (in Chinese)
    杨天杭,胡秀清,徐寒列等. 2019. 基于交叉比对的风云三号D星红外高光谱大气探测仪辐射定标性能评估. 光学学报,39(11):1130003 doi: 10.3788/AOS201939.1130003

    Yang T H,Hu X Q,Xu H L,et al. 2019. Radiation calibration accuracy assessment of FY-3D hyperspectral infrared atmospheric sounder based on inter-comparison. Acta Opt Sinica,39(11):1130003 (in Chinese) doi: 10.3788/AOS201939.1130003
    张志清,陆风,方翔等. 2017. FY-4卫星应用和发展. 上海航天,34(4):8-19 doi: 10.19328/j.cnki.1006-1630.2017.04.002

    Zhang Z Q,Lu F,Fang X,et al. 2017. Application and development of FY-4 meteorological satellite. Aerosp Shanghai,34(4):8-19 (in Chinese) doi: 10.19328/j.cnki.1006-1630.2017.04.002
    中国气象局. 2010. 常规高空气象观测业务规范. 北京: 气象出版社, 4-24.

    China Meteorological Administration. 2010. Operational Specification for Conventional High Altitude Meteorological Observation. Beijing: China Meteorological Press, 4-24(in Chinese)
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2017. 地面气象观测规范 空气湿度和温度(GB/T 35226-2017). 北京: 中国标准出版社, 9-11.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. 2017. Specifications for Surface Meteorological Observation-Air Temperature and Humidity (GB/T 35226-2017). Beijing: China Standard Press, 9-11(in Chinese)
    Cressman G P. 1959. An operational objective analysis system. Mon Wea Rev,87(10):367-374 doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
    Dai A G,Wang J H,Ware R H,et al. 2002. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J Geophys Res Atmos,107(D10):4090
    Duan J P,Bevis M,Fang P,et al. 1996. GPS meteorology:Direct estimation of the absolute value of precipitable water. J Appl Meteor Climatol,35(6):830-838 doi: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
    Gambacorta A, Barnet C, Wolf W, et al. 2012. The NOAA unique CrIS/ATMS processing system (NUCAPS): First light resultsITSC-18 (International TOVS Study Conferences). Toulouse, France: Interna-tional TOVS Working Group, 1-9
    Gambacorta A,Barnet C D. 2018. Atmospheric soundings from hyperspectral satellite observations. Compr Remote Sens,7:64-96
    Kuo Y H,Guo Y R,Westwater E R. 1993. Assimilation of precipitable water measurements into a mesoscale numerical model. Mon Wea Rev,121(4):1215-1238 doi: 10.1175/1520-0493(1993)121<1215:AOPWMI>2.0.CO;2
    Kuo Y H,Schreiner W S,Wang J,et al. 2005. Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett,32(5):L05817
    Lee S W,Kouba J,Schutz B,et al. 2013. Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geod,87(10-12):923-934 doi: 10.1007/s00190-013-0655-y
    Li J,Li Z L,Wang P,et al. 2017. An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy-sky conditions. J Geophys Res Atmos,122(14):7600-7613 doi: 10.1002/2016JD026273
    Liang H,Cao Y C,Wan X M,et al. 2015. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod Geodyn,6(2):135-142 doi: 10.1016/j.geog.2015.03.001
    Liou Y A,Teng Y T,Van Hove T,et al. 2001. Comparison of precipitable water observations in the near tropics by GPS,microwave radiometer,and radiosondes. J Appl Meteor Climatol,40(1):5-15 doi: 10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
    Min M,Wu C Q,Li C,et al. 2017. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites:Fengyun-4 series. J Meteor Res,31(4):708-719 doi: 10.1007/s13351-017-6161-z
    Nalli N R,Gambacorta A,Liu Q H,et al. 2018. Validation of atmospheric profile retrievals from the SNPP NOAA-unique combined atmospheric processing system. Part 1:Temperature and moisture. IEEE Trans Geosci Remote Sens,56(1):180-190 doi: 10.1109/TGRS.2017.2744558
    Ohtani R,Naito I. 2000. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J Geophys Res Atmos,105(D22):26917-26929 doi: 10.1029/2000JD900362
    Rocken C,Van Hove T,Johnson J,et al. 1995. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology. J Atmos Ocean Technol,12(3):468-478 doi: 10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2
    Schneider M,Hase F. 2011. Optimal estimation of tropospheric H2O and δD with IASI/METOP. Atmos Chem Phys,11(21):11207-11220 doi: 10.5194/acp-11-11207-2011
    Vaquero-Martíne J,Antón M. 2021. Review on the role of GNSS meteorology in monitoring water vapor for atmospheric physics. Remote Sens,13(12):2287 doi: 10.3390/rs13122287
    Wulfmeyer V,Hardesty R M,Turner D D,et al. 2015. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev Geophys,53(3):819-895 doi: 10.1002/2014RG000476
    Xue Q M,Guan L,Shi X N. 2022. One-dimensional variational retrieval of temperature and humidity profiles from the FY4A GIIRS. Adv Atmos Sci,39(3):471-486 doi: 10.1007/s00376-021-1032-z
    Yang J,Zhang Z Q,Wei C Y,et al. 2017. Introducing the new generation of Chinese geostationary weather satellites,Fengyun-4. Bull Amer Meteor Soc,98(8):1637-1658 doi: 10.1175/BAMS-D-16-0065.1
    Zhang C M,Gu M J,Hu Y,et al. 2021. A study on the retrieval of temperature and humidity profiles based on FY-3D/HIRAS infrared hyperspectral data. Remote Sens,13(11):2157 doi: 10.3390/rs13112157
  • 加载中
图(11)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  29
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-08-11

目录

    /

    返回文章
    返回