Analysis on the development and maintenance mechanism of the extreme heavy rainfall in Henan on July 2021
-
摘要: 利用实况资料和ERA5再分析资料对“21.7”河南极端暴雨过程的锋生作用、大气非绝热加热和水汽净收支进行了深入分析,揭示此次过程天气尺度系统发展维持机制。结果表明:本次极端暴雨过程中,河南位于西北太平洋副热带高压(副高)和大陆高压之间的鞍型场中,低层辐合高层辐散的配置有利于500 hPa低压系统的发展和维持;锋生作用主要发生在对流层低层且与
$ {\theta }_{se} $ 密集区有较好的对应关系,水平散度项和水平变形项起主导作用,两者的贡献基本相当;视热源<Q1>和视水汽汇<Q2>水平分布与强降雨落区较为吻合,二者的垂直分布有明显差异,Q1最强加热作用在对流层中高层,而Q2垂直分布较为均匀但强度明显小于Q1,Q1中位温垂直输送项起主导作用,而Q2中比湿水平平流项发挥着主导作用,这表明本次河南极端暴雨中,区域性强凝结潜热的释放对降水有正反馈作用。伴随来自台风烟花(2106)北侧偏东气流的不断加强西进,强风速切变及地形抬升引发异常强盛的边界层水汽辐合,总水汽收支主要受到东西向水汽净流入的主导,偏东路径边界层极强的水汽输送对极端暴雨过程的维持和加强起到十分关键的作用。Abstract: The frontogenesis, atmospheric diabatic heating and net water vapor budget are analyzed to reveal the development and maintenance mechanism of the synoptic scale system of the Henan extreme heavy rainfall from 19 July to 21 July in 2021 using automatic weather station observations and the fifth-generation European Center for Medium-Range Weather Forecasts atmospheric reanalysis data. Results show that Henan is located in the saddle area between the Northwest Pacific subtropical high (NPSH) and the continental high. In this situation, the convergence in low levels is collocated with the divergence at high levels, which is conducive to the development and maintenance of the low-pressure system at 500 hPa during the extreme heavy rainfall. The frontogenesis mainly occurs in the lower troposphere and is consistent with the θse intensive region. The horizontal divergence term and horizontal deformation term play equally important leading roles in the frontogenesis. The horizontal distribution of the apparent heat source <Q1> and moisture sink <Q2> coincide with the area of heavy rainfall. However, vertical distributions show significant differences between Q1 and Q2. Q1 features an obvious single peak structure with the heating center in the middle and upper troposphere, while the large value area of Q2 is evenly distributed at 850—400 hPa. Q1 is larger than Q2 in the middle and upper troposphere. The potential temperature vertical transport term dominates in Q1 and the specific humidity horizontal transport term dominates in Q2, indicating that the release of regional-scale strong condensational latent heat has a positive feedback effect on the precipitation. With the continuous strengthening of the easterly air flow from the north side of typhoon Fireworks (2106), the strong wind shear and topographic uplift lead to an abnormally strong convergence of water vapor in the boundary layer. The net inflow of water vapor from the east and west dominates the total water vapor budget. The extremely strong water vapor transport in the boundary layer from the east plays a key role in maintaining and strengthening the extreme rainfall process. -
图 1 2021年7月19—22日日累计降水量 (08时至次日08时)(a. 日累计降水量突破历史极值的站点分布和所在区域的地形高度 (色阶,单位:m),b. 20日08时—21日08时累计降水量 (单位:mm),c. 21日08时—22日08时累计降水量 (单位:mm);黑色圆点为郑州气象站的位置,黑色方框为暴雨区 (33.5°—36°N,112.5°—115°E))
Figure 1. Monitoring of daily accumulative heavy rainfall (08:00 BT to 08:00 BT the next day) from 20 Jul to 22 Jul 2021 (a. distribution of stations with record-breaking daily accumulative rainfall and topographic height of the area (shadings,unit:m),b. daily accumulative rainfall from 08:00 BT 20 July to 08:00 BT 21 July 2021 (unit:mm),c. accumulative rainfall from 08:00 BT 21 July to 08:00 BT 22 July 2021 (unit:mm). In (b)—(c),the black dot shows the position of Zhengzhou meteorological station and the black box indicates the area of heavy rainfall (33.5°—36°N,112.5°—115°E))
图 2 2021年7月20日08时天气形势 (a. 200 hPa高度场 (等值线,单位:dagpm) 和风场 (风羽),b. 500 hPa高度场 (黑色等值线,单位:dagpm)、风场 (风羽) 和温度场 (红色等值线,单位:℃),c. 850 hPa风场 (风羽) 和比湿 (绿色等值线,单位:g/kg),黑色圆点为郑州站的位置)
Figure 2. Synoptic weather pattern at 08:00 BT 20 July 2021 (a. geopotential height (contours,unit:dagpm) and wind (barbs) at 200 hPa,b. geopotential height (contours,unit:dagpm),temperature (red solid lines,unit:℃) and wind (barbs) at 500 hPa,c. specific humidity (green solid lines,unit:g/kg) and wind (barbs) at 850 hPa. Black dot shows the position of Zhengzhou meteorological station)
图 3 2021年7月20—21日 925 hPa锋生函数 (色阶,单位:10−9 K/(m·s))和假相当位温(等值线,单位:K)分布 (a. 20日08时,b. 20日20时,c. 21日08时,d. 21日20时;黑色圆点为郑州气象站的位置)
Figure 3. Frontogenesis function (shadings,unit:10−9 K/(m·s)) and
$ {\theta }_{se} $ (contours,unit:K) at 925 hPa from 20 July to 21 July in 2021 (a. 08:00 BT 20 July,b. 20:00 BT 20 July,c. 08:00 BT 21 July,d. 20:00 BT 21 July;black dot is the position of Zhengzhou meteorological station)图 4 2021年7月20—21日沿郑州站所在经度的锋生函数 (填色,单位:10−9 K/(m·s)) 和假相当位温 (等值线,单位:K) 剖面 (a. 20日08时,b. 20日20时,c. 21日08时,d. 21日20时)
Figure 4. Cross sections of frontogenesis function (shadings,unit:10−9 K/(m·s)) and
$ {\theta }_{se} $ (contours,unit:K) along Zhengzhou meteorological station from 20 Jul to 21 Jul in 2021 (a. 08:00 BT 20 July,b. 20:00 BT 20 July,c. 08:00 BT 21 July,d. 20:00 BT 21 July)图 5 2021年7月20—21日925 hPa锋生函数水平散度项 (色阶,单位:10−9 K/(m·s))、风场 (风羽) 和散度 (等值线,单位:10−5 s−1) 分布 (a. 20日08时,b. 20日20时,c. 21日08时,d. 21日20时;黑色圆点为郑州气象站的位置)
Figure 5. Horizontal convergence term of frontogenesis function (shadings,unit:10−9 K/(m·s)),wind (barbs) and divergence (contours,unit:10−5 s−1) at 925 hPa from 20 July to 21 July 2021. (a. 08:00 BT 20 July,b. 20:00 BT 20 July,c. 08:00 BT 21 July,d. 20:00 BT 21 July;black dot is the position of Zhengzhou meteorological station)
图 6 2021年7月20—21日925 hPa锋生函数水平变形项 (色阶,单位:10 −9 K/(m·s)) 和切变变形项 (等值线,单位:10 −9 K/(m·s)) 分布 (a. 20日08时,b. 20日20时,c. 21日08时,d. 21日20时;黑色圆点为郑州气象站位置)
Figure 6. Horizontal deformation term of frontogenesis function (shadings,unit:10−9 K/(m·s)) and shear deformation term (contours,unit:10 −9 K/(m·s)) at 925 hPa from 20 July to 21 July 2021 (a. 08:00 BT 20 July,b. 20:00 BT 20 July,c. 08:00 BT 21 July,d.20:00 BT 21 July;black dot is the position of Zhengzhou meteorological station)
图 7 2021年7月 (a) 20日和 (b) 21日的暴雨区域(33.5°—36.5°N,112.5°—115°E) 平均Q1 (单位:K/h)、Q2 (单位:K/h) 和垂直速度 (单位:Pa/s) 日平均垂直廓线
Figure 7. Vertical profiles of Q1 (unit:K/h),Q2 (unit:K/h) and vertical velocity (unit:Pa/s) averaged over the heavy rainfall region (33.5°—36.5°N,112.5°—115°E) on (a) 20 July and (b) 21 July in 2021
图 9 2021年7月(a)20日和(b)21日的暴雨区域(33.5°—36.5°N,112.5°—115°E)区域平均Q1各分量 (单位:K/h) 垂直廓线,(c、d) 同 (a、b),但为Q2各分量 (单位:K/h) 日平均垂直廓线
Figure 9. Component vertical profiles of area-averaged Q1 (unit:K/h) in heavy rainfall region (33.5°—36.5°N,112.5°—115°E) on (a) 20 Jul and (b) 21 Jul 2021, (c,d) are same as (a,b) but for Q2 (unit:K/h)
图 10 2021年7月 (a) 20日08—20时平均和 (b) 21日08—20时平均大尺度潜热加热率 (Hs,单位:K/h) 分布图,(c、d) 同 (a、b),但为对流潜热加热率 (Hc,单位:K/h),黑色圆圈为郑州站的位置
Figure 10. Distributions of large scale condensational latent heating rate (Hs,unit:K/h) and convective condensational latent heating rate (Hc). (a) Hs corresponds to averaged rainfall from 08:00 BT to 20:00 BT 20 July,(b) Hs corresponds to averaged rainfall from 08:00 BT to 20:00 BT 21 July 2021. (c,d) are same as (a,b) but for Hc (Black circle is the position of Zhengzhou meteorological station)
图 11 2021年7月20—21日1000—700 hPa垂直积分水汽通量 (箭头,单位:kg/(m·s))及水汽通量散度 (填色,单位:10−5kg /(m2·s)) 分布 (a. 20日08时,b. 20日20时,c. 21日08时,d. 21日20时;黑色圆点为郑州气象站的位置,黑色方框为暴雨过程水汽辐合区域(33°—38°N,112°—116°E))
Figure 11. Water vapor flux (arrows,unit:kg/(m·s)) vertically integrated from 1000 hPa to 700 hPa and corresponding divergence field (shadings,unit: 10−5kg /(m2·s)) from 1000 hPa to 700 hPa from 20 July to 21 July 2021 (a. 08:00 BT 20 July,b. 20:00 BT 20 July,c. 08:00 BT 21 July,d. 08:00 BT 21 July;black dot is the position of Zhengzhou meteorological station,the black box indicates the domain of water vapor flux convergence area (33°—38°N,112°—116°E))
图 12 2021年7月20—21日水汽辐合区域平均 (32°—38°N,111°—116°E) 水汽通量东西两侧 (实线)、南北两侧 (虚线) 和总水汽收支 (点线) 的垂直廓线 (单位:107 kg/s)(a. 20日08时,b. 20日20日,c. 21日08时, d. 21日20时)
Figure 12. Vertical profiles of east-west sides of water vapor budget,north-south sides of water vapor budget and total water vapor budget area-averaged over the water vapor fluxes convergence region (32°—38°N,111°—116°E) from 20 July to 21 July in 2021 (unit:107 kg/s)(a. 08:00 BT 20 July,b. 20:00 BT 20 July, c. 08:00 BT 21 July, d. 20:00 BT 21 July)
-
布和朝鲁,诸葛安然,谢作威等. 2022. 2021年“7.20”河南暴雨水汽输送特征及其关键天气尺度系统. 大气科学,46(3):725-744Bueh C,Zhuge A R,Xie Z W,et al. 2022. Water vapor transportation features and key synoptic-scale systems of the “7.20” rainstorm in Henan province in 2021. Chinese J Atmos Sci,46(3):725-744 (in Chinese) 丁一汇,李吉顺,孙淑清等. 1980. 影响华北夏季暴雨的几类天气尺度系统分析∥中国科学院大气物理研究所. 暴雨及强对流天气的研究:中国科学院大气物理研究所集刊,第9号. 北京:科学出版社,1-13Ding Y H,Li J H,Sun S Q,et al. 1980. The analysis on mesoscale systems producing heavy rainfall in North China∥Institute of Atmospheric Physics,Chinese Academy of Sciences. Papers of Institute of Atmospheric Physics,Chinese Academy of Sciences (CAS),No. 9. Beijing:Science Press,1-13 (in Chinese) 丁一汇,王笑芳. 1988. 1983年长江中游梅雨期的热源和热汇分析. 热带气象,4(2):134-145Ding Y H,Wang X F. 1988. An analysis of distribution of apparent heat sources and sinks over the middle reaches of the Yangtze River during the Meiyu season in 1983. J Trop Meteor,4(2):134-145 (in Chinese) 杜小玲,蓝伟. 2010. 两次滇黔准静止锋锋区结构的对比分析. 高原气象,29(5):1183-1195Du X L,Lan W. 2010. Contrastive analysis on frontal structure of quasi-stationary front in two precipitation processes of Yunnan-Guizhou. Plateau Meteor,29(5):1183-1195 (in Chinese) 段旭,张亚男,梁红丽. 2018. 三种温湿参数下昆明准静止锋锋面位置及锋生函数诊断的对比分析. 大气科学,42(2):301-310Duan X,Zhang Y N,Liang H L. 2018. A comparative analysis of the Kunming quasi-stationary frontal position and frontogenesis function with three different temperature and humidity parameters. Chinese J Atmos Sci,42(2):301-310 (in Chinese) 郭幼君. 2000. 北京一次大暴雨过程视热源和视减湿特征分析. 气象,26(11):7-13 doi: 10.3969/j.issn.1000-0526.2000.11.002Guo Y J. 2000. Analysis of apparent heat sources and moisture sinks over Beijing during the heavy rain in 1998. Meteor Mon,26(11):7-13 (in Chinese) doi: 10.3969/j.issn.1000-0526.2000.11.002 韩桂荣,何金海,樊永富等. 2005. 变形场锋生对0108登陆台风温带变性和暴雨形成作用的诊断分析. 气象学报,63(4):468-476 doi: 10.3321/j.issn:0577-6619.2005.04.008Han G R,He J H,Fan Y F,et al. 2005. The transfiguration frontogenesis analyses on 0108 landfall typhoon extratropical transition and heavy rain structure. Acta Meteor Sinica,63(4):468-476 (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.04.008 何立富,周庆亮,陈涛. 2009. “05.6”华南特大暴雨过程大尺度水汽输送特征. 气象与减灾研究,32(1):10-16He L F,Zhou Q L,Chen T. 2009. Characteristics of the large-scale water vapor transportation during the “05.6” heavy rain event in south China. Meteor Dis Reduct Res,32(1):10-16 (in Chinese) 何立富,陈涛,孔期. 2016. 华南暖区暴雨研究进展. 应用气象学报,27(5):559-569 doi: 10.11898/1001-7313.20160505He L F,Chen T,Kong Q. 2016. A review of studies on prefrontal torrential rain in South China. J Appl Meteor Sci,27(5):559-569 (in Chinese) doi: 10.11898/1001-7313.20160505 何立富,陈双,郭云谦. 2020. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报,31(5):513-526 doi: 10.11898/1001-7313.20200501He L F,Chen S,Guo Y Q. 2020. Obtervation characteristics and synoptic mechanisms of typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci,31(5):513-526 (in Chinese) doi: 10.11898/1001-7313.20200501 侯建忠,王川,鲁渊平等. 2006. 台风活动与陕西极端暴雨的相关特征分析. 热带气象学报,22(2):203-208 doi: 10.3969/j.issn.1004-4965.2006.02.014Hou J Z,Wang C,Lu Y P,et al. 2006. Activity of typhoons and extreme rainstorms in Shanxi province. J Trop Meteor,22(2):203-208 (in Chinese) doi: 10.3969/j.issn.1004-4965.2006.02.014 矫梅燕,毕宝贵,鲍媛媛等. 2006. 2003年7月3~4日淮河流域大暴雨结构和维持机制分析. 大气科学,30(3):475-490Jiao M Y,Bi B G,Bao Y Y,et al. 2006. Thermal and dynamical structure of heavy rainstorm in the Huaihe River basin during 3-4 July 2003. Chinese J Atmos Sci,30(3):475-490 (in Chinese) 雷蕾,孙继松,何娜等. 2017. “7.20”华北特大暴雨过程中低涡发展演变机制研究. 气象学报,75(5):685-699Lei L,Sun J S,He N,et al. 2017. A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta Meteor Sinica,75(5):685-699 (in Chinese) 李娜,冉令坤,周玉淑等. 2013. 北京“7.21”暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析. 气象学报,71(4):593-605 doi: 10.11676/qxxb2013.065Li N,Ran L K,Zhou Y S,et al. 2013. Diagnosis of the frontogenesis and slantwise vorticity development caused by the deformation in the Beijing “7.21” torrential rainfall event. Acta Meteor Sinica,71(4):593-605 (in Chinese) doi: 10.11676/qxxb2013.065 梁旭东,夏茹娣,宝兴华等. 2022. 2021年7月河南极端暴雨过程概况及多尺度特征初探. 科学通报,67(10):997-1011Liang X D,Xia R D,Bao X H,et al. 2022. Preliminary investigation on the extreme rainfall event during July 2021 in Henan Province and its multi-scale processes. Chinese Sci Bull,67(10):997-1011 (in Chinese) 齐道日娜,何立富,王秀明等. 2022. “7·20”河南极端暴雨精细观测及热动力成因. 应用气象学报,33(1):1-15Chyi D,He L F,Wang X M,et al. 2022. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci,33(1):1-15 (in Chinese) 秦育婧,卢楚翰. 2013. 利用高分辨率ERA-Interim再分析资料对2011年夏季江淮区域水汽汇的诊断分析. 大气科学,37(6):1210-1218 doi: 10.3878/j.issn.1006-9895.2013.12163Qin Y J,Lu C H. 2013. Diagnostic study of summer moisture sinks over the Yangtze-Huaihe River basin in 2011 based on high-resolution ERA-Interim reanalysis data. Chinese J Atmos Sci,37(6):1210-1218 (in Chinese) doi: 10.3878/j.issn.1006-9895.2013.12163 冉令坤,李舒文,周玉淑等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析. 大气科学,45(6):1366-1383Ran L K,Li S W,Zhou Y S,et al. 2021. Observational analysis of the dynamic,thermal,and water vapor characteristics of the “7.20” extreme Rainstorm Event in Henan Province,2021. Chinese J Atmos Sci,45(6):1366-1383 (in Chinese) 苏爱芳,吕晓娜,崔丽曼等. 2021. 郑州“7.20”极端暴雨天气的基本观测分析. 暴雨灾害,40(5):445-454Su A F,Lü X N,Cui L M,et al. 2021. Prediction and test of optimal integrated precipitation based on similar spatial distribution of precipitation. Torrential Rain Disaster,40(5):445-454 (in Chinese) 孙建华,赵思雄. 2000. 登陆台风引发的暴雨过程之诊断研究. 大气科学,24(2):223-237 doi: 10.3878/j.issn.1006-9895.2000.02.11Sun J H,Zhao S X. 2000. Diagnoses and simulations of typhoon (Tim) landing and producing heavy rainfall in China. Chinese J Atmos Sci,24(2):223-237 (in Chinese) doi: 10.3878/j.issn.1006-9895.2000.02.11 孙建华,赵思雄,傅慎明等. 2013. 2012年7月21日北京特大暴雨的多尺度特征. 大气科学,37(3):705-718Sun J H,Zhao S X,Fu S M,et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21,2012. Chinese J Atmos Sci,37(3):705-718 (in Chinese) 孙淑清,杜长萱. 1996. 梅雨锋的维持与其上扰动的发展特征. 应用气象学报,7(2):153-159Sun S Q,Du C X. 1996. The maintenance of Mei-Yu front and development associated disturbance. Quart J Appl Meteor,7(2):153-159 (in Chinese) 陶诗言. 1980. 中国之暴雨. 北京:科学出版社,225ppTao S Y. 1980. Heavy Rain in China. Beijing:Science Press,225pp (in Chinese) 陶祖钰,郑永光,张小玲. 2008. 2008年初冰雪灾害和华南准静止锋. 气象学报,66(5):850-854Tao Z Y,Zheng Y G,Zhang X L. 2008. Southern China quasi-stationary front during ice-snow disaster of January 2008. Acta Meteor Sinica,66(5):850-854 (in Chinese) 王兴宝,吕克利. 1994. 凝结潜热对锋生的影响. 气象学报,52(1):40-48Wang X B,Lü K L. 1994. The influence of condensation heating on frontogenesis. Acta Meteor Sinica,52(1):40-48 (in Chinese) 王兴宝,伍荣生. 2000. 变形场锋生条件下斜压锋区上对称波包的发展. 气象学报,58(4):403-417 doi: 10.11676/qxxb2000.043Wang X B,Wu R S. 2000. The development of symmetric disturba-nces superposed on baroclinic frontal zone under the action of deformation field. Acta Meteor Sinica,58(4):403-417 (in Chinese) doi: 10.11676/qxxb2000.043 吴国雄,蔡雅萍,唐晓菁. 1995. 湿位涡和倾斜涡度发展. 气象学报,53(3):387-405Wu G X,Cai Y P,Tang X J. 1995. Moist potential vorticity and slantwise vorticity development. Acta Meteor Sinica,53(3):387-405 (in Chinese) 吴国雄,蔡雅萍. 1997. 风垂直切变和下滑倾斜涡度发展. 大气科学,21(3):273-282 doi: 10.3878/j.issn.1006-9895.1997.03.03Wu G X,Cai Y P. 1997. Vertical wind shear and down-sliding slantwise vorticity development. Sci Atmos Sinica,21(3):273-282 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.03.03 谢作威,布和朝鲁,诸葛安然等. 2022. “21.7”河南暴雨暖湿季风输送带加强及关键天气流型的准地转位涡反演. 大气科学,46(5):1147-1166Xie Z W,Bueh C,Zhuge A R,et al. 2022. An intensification of the warm and moist conveyor belt of the Asian summer monsoon in the “21.7” Henan rainstorm and its key circulation from the quasi-geostrophic potential vorticity perspective. Chinese J Atmos Sci,46(5):1147-1166 (in Chinese) 杨舒楠,端义宏. 2020. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报,31(3):290-302 doi: 10.11898/1001-7313.20200304Yang S N,Duan Y H. 2020. Extremity analysis on the precipitation and environmental field of typhoon Rumbia in 2018. J Appl Meteor Sci,31(3):290-302 (in Chinese) doi: 10.11898/1001-7313.20200304 游景炎. 1965. 暴雨带内的中尺度系统. 气象学报,35(3):293-304 doi: 10.11676/qxxb1965.033You J Y. 1965. The mesoscale systems in heavy rainfall zone. Acta Meteor Sinica,35(3):293-304 (in Chinese) doi: 10.11676/qxxb1965.033 俞小鼎. 2012. 2012年7月21日北京特大暴雨成因分析. 气象,38(11):1313-1329Yu X D. 2012. Investigation of Beijing extreme flooding event on 21 July 2012. Meteor Mon,38(11):1313-1329 (in Chinese) 朱乾根, 林锦瑞, 寿绍文等. 2000. 天气学原理和方法. 3版. 北京: 气象出版社, 120-122. Zhu Q G, Lin Hersbach H,Bell B,Berrisford P,et al. 2020. The ERA5 global reanalysis. Quart J Roy Meteor Soc,146:1999-2049 doi: 10.1002/qj.3803 J R,Shou S W,et al. 2000. The Principle and Method of Weather. 3rd ed. Beijing:China Meteorological Press,120-122 (in Chinese) Luo H B,Yanai M. 1983. The large-scale circulation and heat sources over the Tibetan plateau and surrounding areas during the early summer of 1979. Part I:Precipitation and kinematic analyses. Mon Wea Rev,111(5):922-944 doi: 10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2 Ninomiya K. 1984. Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J Meteor Soc Japan,62(6):880-894 doi: 10.2151/jmsj1965.62.6_880 Ninomiya K. 2000. Large- and Meso-α-scale characteristics of Meiyu/Baiu front associated with intense rainfalls in 1-10 July 1991. J Meteor Soc Japan,78(2):141-157 doi: 10.2151/jmsj1965.78.2_141 Petterssen S. 1936. Contribution to the theory of frontogenesis. Geofysiske Publikasjoner,11(6):1-27 Petterssen S. 1956. Weather Analysis and Forecasting. Vol. I:Motion and Motion Systems. 2nd ed. New York:McGraw Hill,488pp Yanai M,Li C F,Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteor Soc Japan,70(1B):319-351 doi: 10.2151/jmsj1965.70.1B_319 Yin J F,Gu H D,Liang X D,et al. 2022. A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. J Meteor Res,36(1):6-25 doi: 10.1007/s13351-022-1166-7 -