留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷涡背景下华北平原一次弓形回波致灾大风过程分析

许长义 章丽娜 肖现 王彦

许长义,章丽娜,肖现,王彦. 2023. 冷涡背景下华北平原一次弓形回波致灾大风过程分析. 气象学报,81(1):1-18 doi: 10.11676/qxxb2023.20220024
引用本文: 许长义,章丽娜,肖现,王彦. 2023. 冷涡背景下华北平原一次弓形回波致灾大风过程分析. 气象学报,81(1):1-18 doi: 10.11676/qxxb2023.20220024
Xu Changyi, Zhang Lina, Xiao Xian, Wang Yan. 2023. Analysis of a damaging wind case caused by bow echo in the environment of cold vortex over North China Plain. Acta Meteorologica Sinica, 81(1):1-18 doi: 10.11676/qxxb2023.20220024
Citation: Xu Changyi, Zhang Lina, Xiao Xian, Wang Yan. 2023. Analysis of a damaging wind case caused by bow echo in the environment of cold vortex over North China Plain. Acta Meteorologica Sinica, 81(1):1-18 doi: 10.11676/qxxb2023.20220024

冷涡背景下华北平原一次弓形回波致灾大风过程分析

doi: 10.11676/qxxb2023.20220024
基金项目: 天津市海洋气象重点实验室开放基金(2020TKLOMYB02)
详细信息
    作者简介:

    许长义,主要从事强对流预报技术研究。E-mail:xusupergirl@163.com

    通讯作者:

    章丽娜,主要从事中尺度气象学研究。E-mail:zhangln@cma.cn

  • 中图分类号: P458

Analysis of a damaging wind case caused by bow echo in the environment of cold vortex over North China Plain

  • 摘要: 为了提高对弓形回波致灾大风环境演变和致灾机理的认识,综合利用多源观测和ERA5再分析资料,研究了2020年6月25日华北平原夜间弓形回波的风暴环境演变特征及地面致灾大风的成因机制。结果表明:此次过程发生在高空冷涡背景下,华北平原处于中层干冷气流与低层西南暖湿气流叠加区域,因此有利于强对流天气的发生;对流风暴演变可归结为“超级单体-弓形回波-逗点回波”三个阶段,风暴环境逐渐从中等强度的对流有效位能和深层风垂直切变向弱的对流有效位能和强的风垂直切变演变;超级单体阶段,探空曲线呈“X”型分布,负浮力效应为地面大风的产生提供主要贡献,动量下传和冷池密度流的作用为辅;弓形回波阶段,由于低层暖平流和地面辐射降温的共同作用,近地面出现较强逆温,850—500 hPa垂直温度直减率增大,负浮力、动量下传和冷池密度流作用均较前一阶段明显加强,导致地面13级致灾大风的形成;逗点回波阶段,850—700 hPa的干层减弱,负浮力作用与超级单体阶段相当,动量下传和冷池密度流作用与弓形回波阶段相当,造成地面大风的形成。最后给出本次弓形回波环境演变和致灾机理的物理模型。

     

  • 图 1  2020年6月25日20时天气形势 (a. 500 hPa位势高度 (蓝色实线,单位:dagpm)、温度 (红色虚线,单位:℃)、850 hPa与500 hPa温差 (色阶,单位:℃) 及风场 (风向杆,单位:m/s),其中“D”表示低压 (下同),“L”表示冷中心,棕色实线为槽线;b. 850 hPa位势高度 (蓝色实线,单位:dagpm)、温度 (红色虚线,单位:℃)、≥8 g/kg比湿 (色阶,单位:g/kg) 及风场 (风向杆),棕色实线为切变线)

    Figure 1.  Synoptic pattern at 20:00 BT 25 June 2020 (a. geopotential height (blue solid lines,unit:dagpm),temperature (red dashed line,unit:℃) ,temperature difference between 850—500 hPa (shaded,unit:℃) and horizontal wind at 500 hPa, the red letter "L" denotes low pressure,the brown line indicates trough;b. geopotential height (blue solid lines,unit:dagpm),temperature (red dashed lines,unit:℃),specific humidity larger than 8 g/kg (shaded,unit:g/kg) and horizontal wind at 850 hPa, the brown line shows shear line)

    图 2  2020年6月25日21时—26日00时对流风暴演变过程 (对应超级单体 (stage Ⅰ)、弓形回波 (stageⅡ) 和逗点回波 (stage Ⅲ) 3个阶段) 及强对流天气分布特征 (其中,色阶超过40 dBz的雷达组合反射率拼图,灰阶为地形高度,绿色实心点表示短时强降水 (≥20 mm/h,雨强越大,实心点的直径越大),风向杆表示雷暴大风 (≥17 m/s),蓝色“×”分别表示北京大兴、天津西青和天津津南3个测站,蓝色“☆”表示天津边界层气象铁塔位置)

    Figure 2.  Evolution of the convective storm from 21:00 to 24:00 BT 25 June 2020 (color shaded:composite reflectivity ≥40 dBz;gray shaded: topography (unit:m),rainfall intensity ≥20 mm/h (dotted) and wind speed ≥17 m/s (wind barbs) ,× indicates Daxing,Xiqing and Jinnan,respectively, ☆ indicates Tianjin meteorological tower )

    图 3  2020年6月25日21时30分—23时45分天津边界层气象铁塔逐分钟气象要素时间演变 (a. 水平风场,b. 全风速,c. 温度,d. 相对湿度;stage Ⅰ、stage Ⅱ、stage Ⅲ 分别表示超级单体、弓形回波、逗点回波阶段)

    Figure 3.  Temporal variations of meteorological elements at 1-minute intervals during 21:30—23:45 BT 25 June 2020 (a. horizontal wind,b. wind speed,c. temperature,d. relative humidity;stageⅠ,stage Ⅱ and stage Ⅲ indicate supercell,bow echo and comma echo stage,respectively)

    图 4  基于ERA5资料的2020年6月25日17时中尺度环境条件 (a,灰阶为地形高度 (单位:m),蓝色×表示北京大兴站位置) 和北京大兴站探空 (b,蓝线表示露点曲线,黑线表示温度层结曲线,红实线表示过程曲线,风向杆:全杆为4 m/s)

    Figure 4.  Mesoscale analysis of circulation (a,gray shaded: topography (unit:m),× indicates Daxing) and sounding at Daxing (b,the blue,black and red lines indicate dew point curve,stratification curve and state curve,respectively,the full barb indicates speed of 4 m/s) based on ERA5 reanalysis data at 17:00 BT 25 June 2020

    图 5  2020年6月25日21时30分天津多普勒天气雷达1.5°仰角反射率因子 (a,色阶,单位:dBz) 和1.5°仰角径向速度 (b,色阶,单位:m/s)(黄色圆圈表示雷达识别出的中气旋,蓝色“×”表示北京大兴站)

    Figure 5.  Radar reflectivity at 1.5° elevation (a,shaded,unit:dBz) and radial velocity at 1.5° elevation (b,shaded,unit:m/s) at 21:30 BT 25 June 2020 (the yellow circle donates meso-cyclone,× indicates Daxing)

    图 6  2020年6月25日21时30分 (a) 2.5 km高度反射率因子 (色阶,单位:dBz)、地面散度场 (蓝实线,单位:10−3s−1) 及未来半小时内地面≥17 m/s的阵风 (风向杆,单位:m/s) 分布;(b) 1 h变温 (灰阶,单位:℃)、温度 (彩色圆点,单位:℃)、温度露点差 (数字,单位:℃)、地面加密自动气象站风场 (箭矢,单位:m/s) 和海平面气压场 (蓝色实线,单位:hPa) 分布 (D表示地面低压中心,G表示雷暴高压,绿色数字表示1 h最强变温中心,蓝色“×”表示北京大兴站)

    Figure 6.  (a) Radar reflectivity (shaded,unit:dBz) at 2.5 km height,divergence (blue solid lines,unit:10−3s−1),station wind field (vectors,unit:m/s) and gust (barbs,unit:m/s),(b) hourly temperature variation (shaded,unit:℃),temperature (colored dots,unit:℃),temperature and dewpoint temperature differences (numbers),sea level pressure (blue solid lines,unit:hPa) and station wind field (barbs,unit:m/s) at 21:30 BT 25 June 2020 (D(G):low (high) pressure center,green digital indicates the largest temperature variation center,× indicates Daxing)

    图 7  2020年6月25日20—24时测站5 min间隔气象要素演变 (a. 北京大兴,b. 天津西青,c. 天津津南;黑色、红色和绿色实线分别表示本站气压、气温和露点温度,柱状表示1 h累积降水量 (单位:mm),蓝色风向杆表示平均风,红色风向杆表示极大风 (单位:m/s))

    Figure 7.  Temporal variations of meteorological elements at 5-minute intervals at (a) Daxing,(b) Xiqing and (c) Jinnan from 20:00 to 24:00 BT 25 June 2020 (black,red and green solid lines indicate station pressure,temperature and dew temperature,bars indicate precipitation (unit:mm),average wind (blue vectors,unit:m/s) and gust (red vectors,unit:m/s))

    图 8  同图4,但为2020年6月25日20时中尺度环境条件 (a,蓝色×表示天津西青站位置) 和天津西青站探空(b)

    Figure 8.  Same as Fig. 4 but for mesoscale analysis of circulation at 20:00 BT 25 June 2020 (a,× indicates Xiqing) and sounding at Xiqing (b)

    图 9  2020年6月25日22时 (a、b) 和22时54分 (c、d) 天津多普勒天气雷达1.5°仰角反射率因子 (a、c,单位:dBz) 和径向速度 (b、d,单位:m/s)(蓝色和黑色圆圈分别为弓形回波北端和南端的气旋式和反气旋式涡旋,RIN分别表示后侧入流缺口,蓝色×表示天津西青站位置,黑色实线为图10剖面)

    Figure 9.  Radar reflectivity (a,c,unit:dBz) and radial velocity (b,d,unit:m/s) at 1.5° elevation at 22:00 BT (a,b) and 22:54 BT (c,d) 25 June 2020 (blue and black circles denote meso-γ cyclone and anticyclone,respectively. RIN denotes the rear inflow notch. × indicates Xiqing. The black think line denotes the locations of vertical cross section shown in Fig. 10)

    图 10  2020年6月25日22时 (a) 和22时54分 (b) 沿图9黑色实线的径向速度垂直剖面 (单位:m/s,MARC和RIJ分别表示中层径向辐合和后侧入流缺口,蓝色×表示天津西青站位置)

    Figure 10.  Vertical cross sections of radial velocity along the black thick line in Fig. 9 at 22:00 BT (a) and 22:54 BT (b) 25 June 2020 (unit:m/s;MARC and RIJ indicate mid-altitude radial convergence and rear inflow notch,respectively, × indicates Xiqing)

    图 11  同图6,但为2020年6月25日22时 (a、c)、22时55分 (b、d)(蓝色“×”表示天津西青站)

    Figure 11.  Same as Fig. 6 but for 22:00 BT (a,c) and 22:55 BT (b,d) (× indicates Xiqing)

    图 12  同图4,但为2020年6月25日22时中尺度环境条件 (a) 和天津津南站探空 (b)

    Figure 12.  Same as Fig. 4 but for mesoscale analysis of circulation at 22:00 BT 25 June 2020 (a,×indicates Jinnan) and sounding at Jinnan (b)

    图 13  同图5,但为6月25日23时24分 (黑色多边形表示逗点回波的范围,紫色箭头表示低层辐散风场,蓝色“×”表示天津津南站)

    Figure 13.  Same as Fig. 5 but for 23:24 BT 25 June 2020 (Black polygon represents the comma echo,purple arrow depict divergence,× indicate Jinnan)

    图 14  同图6,但为6月25日23时20分 (蓝色“×”表示津南站)

    Figure 14.  Same as Fig. 6 but for 23:20 BT 25 June 2020 (× indicates Jinnan)

    图 15  2020年6月25日20—22时北京风廓线雷达水平风场 (a,色阶为水平风速,单位:m/s)、21时30分—22时54分西青风廓线雷达水平风场 (b,色阶为水平风速,单位:m/s) 及垂直速度廓线 (c,单位:m/s)(“▲”表示地面极端大风出现时刻,“↑”和“↓”分别表示上升和下沉运动)

    Figure 15.  The Beijing wind profile radar horizontal wind (a,shaded:speed,unit:m/s) at 20:00—22:00 BT,Xiqing wind profile radar horizontal wind (b,shaded:speed,unit:m/s) and vertical velocity (c,unit:m/s) at 21:30—22:54 BT 25 June 2020 ("▲" denotes the time of extremely damaging gale,"↑"、 "↓" indicate ascending and descending movements,respectively)

    图 16  2020年6月25日21时30分—23时 (a) 冷池传播速度 (C,蓝实线)、ΔU0-3 (黑实线) 和ΔU0-6 (红实线) 的时间演变,(b) C与ΔU0-3 (蓝实线) 和C与ΔU0-6 (红实线) 的比值 (“▲”表示极端大风出现时刻)

    Figure 16.  Time series of cold pool moving speed (m/s;blue solid line),0—3 km AGL (black solid) and 0—6 km AGL vertical wind shears (m/s;red solid line) (a); CU0-3 (blue solid line) and CU0-6 (red solid line) (b) (▲:The time of occurrence of the destructive winds)

    图 17  2020年6月25日弓形回波演变概念模型 (填色和蓝色阴影分别表示雷达回波反射率因子和冷池,蓝色和绿色数字分别表示地面散度和地面冷池强度,红色和蓝色曲线分别表示温度曲线和露点曲线,风向杆:全杆为4 m/s,CAPE、SHR0-6SSBLWmax、Δp分别表示对流有效位能、0—6 km风垂直切变、风暴承载层平均风速、最强下沉气流强度和气压梯度)

    Figure 17.  Conceptual model for the evolution of bow echo (The areas shaded in color and blue indicated radar reflectivity and cold pool,respectively. The blue and green digitals indicate surface divergence and cold pool,respectively. Thick solid lines show the environmental temperature (red) and dewpoint temperature (blue),wind barbs are shown on the right with the full barb indicating a speed of 4 m/s. CAPE,SHR0-6SSBLWmax,Δp indicate convective available potential energy,0—6 km vector shear magnitude,mean wind speed of storm bearing layer,maximum downdraft strength and surface pressure gradient)

    表  1  对流风暴过境前后地面自动站气象要素变率

    Table  1.   Variability of meteorological elements at automatic stations during the period when the thunderstorm passed

    站名气温降幅露点降幅气压升幅大风强度大风时间所处阶段
    北京大兴4.6℃/15 min2.3℃/15 min2.2 hPa/15 min21.6 m/s (9级)21时22分超级单体
    天津西青9.3℃/15 min2.5℃/15 min5.9 hPa/15 min41.4 m/s (13级)22时54分弓形回波
    天津津南4.8℃/15 min0.8℃/15 min3.8 hPa/15 min21.5 m/s (9级)23时26分逗点回波
    下载: 导出CSV

    表  2  基于ERA5资料的对流风暴不同发展演变阶段风暴环境特征 (加粗表示过程最大值)

    Table  2.   Comparison of storm environmental characteristics in the development stage of convective storm based on ERA5 reanalysis data (bold indicate the maximum values during the process)

    发展阶段850 hPa—500 hPa
    温差(℃)
    对流有效位能
    (J/kg)
    对流抑制能量
    (J/kg)
    下沉对流有效
    位能(J/kg)
    下沉气流强度
    (m/s)
    0—6 km风矢
    量差(m/s)
    风暴承载层平均
    风速(m/s)
    超级单体26.211534074519.31811.4
    弓形回波30.27518883320.42114.6
    逗点回波28.46603675419.42313.5
    下载: 导出CSV

    表  3  基于地面观测资料的对流风暴不同发展演变阶段特征对比 (加粗表示过程最大值)

    Table  3.   Comparison of convection characteristics in the development stage of convective storm based on automatic station data (bold indicate the maximum values during the process)

    发展阶段致灾大风强度(m/s)雷暴高压强度(hPa)中低压强度(hPa)气压梯度(hPa/(10km))地面冷池强度(℃)地面散度(10−3s−1
    超级单体21.6 (9级)1003.11000.41.9−6.61.5
    弓形回波41.4 (13级)1007.6雷暴前低压1002.1
    尾流低压1001.8
    2.5−9.33.0
    逗点回波21.5 (9级)1005.9无闭合低压中心2.3−8.71.5
    下载: 导出CSV
  • 陈明轩,王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟. 气象学报,70(3):371-386 doi: 10.11676/qxxb2012.033

    Chen M X,Wang Y C. 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China. Acta Meteor Sinica,70(3):371-386 (in Chinese) doi: 10.11676/qxxb2012.033
    陈涛,张芳华,符娇兰等. 2020. 2014年5月8-9日引发珠江口区域强降水的两个长生命史MCS特征分析. 气象,46(4):449-461 doi: 10.7519/j.issn.1000-0526.2020.04.001

    Chen T,Zhang F H,Fu J L,et al. 2020. Analysis of two successive rainstorm-induced long-lived mesoscale convective systems struck Pearl River Estuary during 8-9 May 2014. Meteor Mon,46(4):449-461 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.04.001
    高晓梅,俞小鼎,王令军等. 2018. 鲁中地区分类强对流天气环境参量特征分析. 气象学报,76(2):196-212 doi: 10.11676/qxxb2018.006

    Gao X M,Yu X D,Wang L J,et al. 2018. Characteristics of environmental parameters for classified severe convective weather in central area of Shandong Province. Acta Meteor Sinica,76(2):196-212 (in Chinese) doi: 10.11676/qxxb2018.006
    康红,费建芳,黄小刚等. 2016. 一次弱弓形飑线后方入流特征的观测分析. 气象学报,74(2):176-188 doi: 10.11676/qxxb2016.020

    Kang H,Fei J F,Huang X G,et al. 2016. The observational analysis of the characteristics of rear inflow in a weak-bow squall line. Acta Meteor Sinica,74(2):176-188 (in Chinese) doi: 10.11676/qxxb2016.020
    李彩玲,蔡康龙,黄先香等. 2021. 桂林一次强下击暴流成因分析. 气象,47(2):242-252 doi: 10.7519/j.issn.1000-0526.2021.02.010

    Li C L,Cai K L,Huang X X,et al. 2021. Cause analysis of a severe downburst in Guilin. Meteor Mon,47(2):242-252 (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.02.010
    梁建宇,孙建华. 2012. 2009年6月一次飑线过程灾害性大风的形成机制. 大气科学,36(2):316-336 doi: 10.3878/j.issn.1006-9895.2011.11017

    Liang J Y,Sun J H. 2012. The formation mechanism of damaging surface wind during the squall line in June 2009. Chinese J Atmos Sci,36(2):316-336 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.11017
    刘香娥,郭学良. 2012. 灾害性大风发生机理与飑线结构特征的个例分析模拟研究. 大气科学,36(6):1150-1164 doi: 10.3878/j.issn.1006-9895.2012.11212

    Liu X E,Guo X L. 2012. Analysis and numerical simulation research on severe surface wind formation mechanism and structural characteristics of a squall line case. Chinese J Atmos Sci,36(6):1150-1164 (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.11212
    罗琪,郑永光,陈敏. 2019. 2017年北京北部一次罕见强弓状飑线过程演变和机理. 气象学报,77(3):371-386 doi: 10.11676/qxxb2019.026

    Luo Q,Zheng Y G,Chen M. 2019. Evolution and development mechanisms of a rare strong arc-shaped squall line that occurred in northern Beijing in 2017. Acta Meteor Sinica,77(3):371-386 (in Chinese) doi: 10.11676/qxxb2019.026
    彭霞云,章丽娜,刘汉华等. 2022. 冷涡底部对流引起的杭州湾极端大风形成机制分析. 气象,48(6):719-728

    Peng X Y,Zhang L N,Liu H H,et al. 2022. Formation mechanism of extreme winds in Hangzhou Bay caused by convection at the bottom of cold vortex. Meteor Mon,48(6):719-728 (in Chinese)
    沈杭锋,方桃妮,蓝俊倩等. 2019. 一次强飑线过程极端大风的中尺度分析. 气象学报,77(5):806-822 doi: 10.11676/qxxb2019.052

    Shen H F,Fang T N,Lan J Q,et al. 2019. Mesoscale analysis of the extremely damaging gale in a severe squall line. Acta Meteor Sinica,77(5):806-822 (in Chinese) doi: 10.11676/qxxb2019.052
    孙虎林,罗亚丽,张人禾等. 2011. 2009年6月3~4日黄淮地区强飑线成熟阶段特征分析. 大气科学,35(1):105-120 doi: 10.3878/j.issn.1006-9895.2011.01.09

    Sun H L,Luo Y L,Zhang R H,et al. 2011. Analysis on the mature-stage features of the severe squall line occurring over the Yellow River and Huaihe River basins during 3-4 June 2009. Chinese J Atmos Sci,35(1):105-120 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.01.09
    孙继松,戴建华,何立富等. 2014. 强对流天气预报的基本原理与技术方法——中国强对流天气预报手册. 北京:气象出版社,280-284

    Sun J S,Dai J H,He L F,et al. 2014. Basic Principles and Technical Methods of Strong Convective Weather Forecasting. Beijing:China Meteorological Press,280-284 (in Chinese)
    陶岚,袁招洪,戴建华等. 2014. 一次夜间弓形回波特征分析. 气象学报,72(2):220-236 doi: 10.11676/qxxb2014.027

    Tao L,Yuan Z H,Dai J H,et al. 2014. Analysis of the characteristics of a nocturnal bow echo. Acta Meteor Sinica,72(2):220-236 (in Chinese) doi: 10.11676/qxxb2014.027
    万夫敬,孙继松,孙敏等. 2021. 山东半岛海风锋在一次飑线系统演变过程中的作用. 气象学报,79(5):717-731 doi: 10.11676/qxxb2021.056

    Wan F J,Sun J S,Sun M,et al. 2021. Impacts of sea breeze front over Shandong Peninsula on the evolution of a squall line. Acta Meteor Sinica,79(5):717-731 (in Chinese) doi: 10.11676/qxxb2021.056
    王秀明,俞小鼎,周小刚等. 2012. “6.3”区域致灾雷暴大风形成及维持原因分析. 高原气象,31(2):504-514

    Wang X M,Yu X D,Zhou X G,et al. 2012. Study on the formation and evolution of "6.3" damage wind. Plateau Meteor,31(2):504-514 (in Chinese)
    许爱华,孙继松,许东蓓等. 2014. 中国中东部强对流天气的天气形势分类和基本要素配置特征. 气象,40(4):400-411 doi: 10.7519/j.issn.1000-0526.2014.04.002

    Xu A H,Sun J S,Xu D B,et al. 2014. Basic synoptic situation classification and element character of severe convection in China. Meteor Mon,40(4):400-411 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.04.002
    许长义,卜清军,黄安宁. 2022. 环渤海湾连续两条阵风锋的关联与成因分析. 气象,48(6):729-745 doi: 10.7519/j.issn.1000-0526.2022.040202

    Xu C Y,Bu Q J,Huang A N. 2022. Analyses on correlation and causes for the consecutive thunderstorm gust fronts over the Bohai Sea Bay. Meteor Mon,48(6):729-745 (in Chinese) doi: 10.7519/j.issn.1000-0526.2022.040202
    俞小鼎,郑永光. 2020. 中国当代强对流天气研究与业务进展. 气象学报,78(3):391-418 doi: 10.11676/qxxb2020.035

    Yu X D,Zheng Y G. 2020. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica,78(3):391-418 (in Chinese) doi: 10.11676/qxxb2020.035
    俞小鼎,王秀明,李万莉等. 2020. 雷暴与强对流临近预报. 北京:气象出版社,291-295

    Yu X D,Wang X M,Li W L,et al. 2020. Nowcast of Thunderstorm and Severe Convection. Beijing:China Meteorological Press,291-295 (in Chinese)
    袁招洪. 2021. 大气环境条件对夜间飑线影响的敏感性试验. 气象学报,79(6):977-1001 doi: 10.11676/qxxb2021.070

    Yuan Z H. 2021. Sensitivity of a nocturnal squall line to atmospheric conditions. Acta Meteor Sinica,79(6):977-1001 (in Chinese) doi: 10.11676/qxxb2021.070
    张琳娜,冉令坤,李娜等. 2018. 雷暴大风过程中对流层中低层动量通量和动能通量输送特征研究. 大气科学,42(1):178-191

    Zhang L N,Ran L K,Li N,et al. 2018. Analysis of momentum flux and kinetic energy flux transport in the middle and lower troposphere during a thunderstorm event. Chinese J Atmos Sci,42(1):178-191 (in Chinese)
    Adams-Selin R D,Johnson R H. 2010. Mesoscale surface pressure and temperature features associated with bow echoes. Mon Wea Rev,138(1):212-227 doi: 10.1175/2009MWR2892.1
    Atkins N T,Bouchard C S,Przybylinski R W,et al. 2005. Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon Wea Rev,133(8):2275-2296 doi: 10.1175/MWR2973.1
    Benjamin T B. 1968. Gravity currents and related phenomena. J Fluid Mech,31(2):209-248 doi: 10.1017/S0022112068000133
    Coniglio M C,Stensrud D J,Wicker L J. 2006. Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J Atmos Sci,63(4):1231-1252 doi: 10.1175/JAS3681.1
    Dai Y,Williams L N. 2022. Land surface effects on shear balance of squall lines. J Geophys Res,127(2):e2021JD035436
    Emanuel K A. 1994. Atmospheric Convection. New York:Oxford University Press,158-165
    Evans J S,Doswell Ⅲ C A. 2001. Examination of derecho environments using proximity soundings. Wea Forecasting,16(3):329-342 doi: 10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2
    Fujita T T. 1978. Manual of downburst identification for project,SMRP Research Paper 156,NTIS PB-2860481. Chicago:University of Chicago,104pp
    Fujita T T,Wakimoto R M. 1981. Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon Wea Rev,109(7):1438-1456 doi: 10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2
    James R P,Markowski P M,Fritsch J M. 2006. Bow echo sensitivity to ambient moisture and cold pool strength. Mon Wea Rev,134(3):950-964 doi: 10.1175/MWR3109.1
    Johns R H,Hirt W D. 1987. Derechos:Widespread convectively induced windstorms. Wea Forecasting,2(1):32-49 doi: 10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2
    Johns R H,Doswell Ⅲ C A. 1992. Severe local storms forecasting. Wea Forecasting,7(4):588-612 doi: 10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
    Liu Y N,Ping F,Fan J H. 2022. Comparative study of the simulation and mechanism of two different severe thunderstorms embedded in a squall line in North China. Atmos Res,270:106074 doi: 10.1016/j.atmosres.2022.106074
    Lovell L T,Parker M D. 2022. Simulated QLCS vortices in a high-shear,low-CAPE environment. Wea Forecasting,37(6):989-1012 doi: 10.1175/WAF-D-21-0133.1
    Ma R Y,Sun J H,Yang X L. 2021a. A 7-yr climatology of the initiation,decay,and morphology of severe convective storms during the warm season over North China. Mon Wea Rev,149(8):2599-2612
    Ma R Y,Sun J H,Yang X L. 2021b. An eight-year climatology of the warm-season severe thunderstorm environments over North China. Atmos Res,254:105519 doi: 10.1016/j.atmosres.2021.105519
    Markowski P,Richardson Y. 2010. Mesoscale Meteorology in Midlatitudes. Chichester:Wiley-Blackwell,245-265
    Mauri E L,Gallus Jr W A. 2021. Differences between severe and nonsevere warm-season,nocturnal bow echo environments. Wea Forecasting,36(1):53-74 doi: 10.1175/WAF-D-20-0137.1
    Parker M D. 2021. Self-organization and maintenance of simulated nocturnal convective systems from PECAN. Mon Wea Rev,149(4):999-1022 doi: 10.1175/MWR-D-20-0263.1
    Przybylinski R W. 1995. The bow echo:Observations,numerical simulations,and severe weather detection methods. Wea Forecasting,10(2):203-218 doi: 10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2
    Ribeiro B Z,Weiss S J,Bosart L F. 2022. An analysis of the 3 May 2020 low-predictability derecho using a convection-allowing MPAS ensemble. Wea Forecasting,37(2):219-239 doi: 10.1175/WAF-D-21-0092.1
    Rotunno R,Klemp J B,Weisman M L. 1988. A theory for strong,long-lived squall lines. J Atmos Sci,45(3):463-485 doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
    Schenkman A D,Xue M. 2016. Bow-echo mesovortices:A review. Atmos Res,170:1-13 doi: 10.1016/j.atmosres.2015.11.003
    Smull B F,Houze Jr R A. 1987. Rear inflow in squall lines with trailing stratiform precipitation. Mon Wea Rev,115(12):2869-2889 doi: 10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2
    Sousa A C,Candido L A,Satyamurty P. 2021. Convective cloud clusters and squall lines along the coastal Amazon. Mon Wea Rev,149(11):3589-3608 doi: 10.1175/MWR-D-21-0045.1
    Trapp R J,Weisman M L. 2003. Low-level mesovortices within squall lines and bow echoes. Part Ⅱ:Their genesis and implications. Mon Wea Rev,131(11):2804-2823 doi: 10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2
    Wakimoto R M,Murphey H V,Davis C A,et al. 2006a. High winds generated by bow echoes. Part Ⅱ:The relationship between the mesovortices and damaging straight-line winds. Mon Wea Rev,134(10):2813-2829 doi: 10.1175/MWR3216.1
    Wakimoto R M,Murphey H V,Nester A,et al. 2006b. High winds generated by bow echoes. Part Ⅰ:Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon Wea Rev,134(10):2793-2812 doi: 10.1175/MWR3215.1
    Weisman M L. 1993. The genesis of severe,long-lived bow echoes. J Atmos Sci,50(4):645-670 doi: 10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2
    Weisman M L. 2001. Bow echoes:A tribute to T. T. Fujita. Bull Amer Meteor Soc,82(1):97-116 doi: 10.1175/1520-0477(2001)082<0097:BEATTT>2.3.CO;2
    Weisman M L,Trapp R J. 2003. Low-level mesovortices within squall lines and bow echoes. Part Ⅰ:Overview and dependence on environmental shear. Mon Wea Rev,131(11):2779-2803 doi: 10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2
    Weisman M L,Rotunno R. 2004. "A theory for strong long-lived squall lines" revisited. J Atmos Sci,61(4):361-382 doi: 10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2
    Wheatley D M,Trapp R J,Atkins N T. 2006. Radar and damage analysis of severe bow echoes observed during BAMEX. Mon Wea Rev,134(3):791-806 doi: 10.1175/MWR3100.1
    Xu X,Xue M,Wang Y. 2015. Mesovortices within the 8 May 2009 bow echo over the central United States:Analyses of the characteristics and evolution based on Doppler radar observations and a high-resolution model simulation. Mon Wea Rev,143(6):2266-2290 doi: 10.1175/MWR-D-14-00234.1
    Zhang L N,Sun J Z,Ying Z M,et al. 2020. Initiation and development of a squall line crossing Hangzhou Bay. J Geophys Res,126(1):e2020JD032504
    Zhou A,Zhao K,Lee W C,et al. 2020. VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a preline convective cell. J Geophys Res,125(7):e2019JD031719
    Zhou A,Zhao K,Lee W C,et al. 2022. Evaluation and modification of microphysics schemes on the cold pool evolution for a simulated bow echo in Southeast China. J Geophys Res,127(2):e2021JD035262
    Zipser E J. 1977. Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon Wea Rev,105(12):1568-1589 doi: 10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  19
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 录用日期:  2022-12-20
  • 修回日期:  2022-08-07
  • 网络出版日期:  2022-08-08

目录

    /

    返回文章
    返回