Winter Olympic comprehensive meteorological observation platform of Haituo Mountain and the research progress
-
摘要: 气象保障是历届冬奥会成功举办的最重要条件之一。延庆赛区(位于延庆海陀山区)地形复杂、山高坡陡、垂直落差大,因而观测难度大、气象数据稀少,成为影响赛区精细化预报的核心因素,对冬奥气象服务提出了严峻挑战。为此,北京市气象局组织开展了冬奥海陀山综合气象观测,针对该区复杂地形和多尺度气象影响系统构建了包含中、小、微尺度的三维立体实时综合观测平台,观测要素涵盖了三维风场、温湿度场、云和能见度、近地面湍流与辐射等。综合观测将提高对复杂山区高影响天气特征和机理的认知,为改进和提高预报模式提供数据支撑。文章系统介绍了海陀山冬奥气象综合观测平台的科学目标、观测布局、观测内容、以及观测平台在降雪过程中的初步应用,最后阐述了基于该观测进一步开展的研究计划。Abstract: Meteorological conditions and support are important for the success of the Winter Olympic Games. The competition area is located at the Haituo Mountain, where the terrain is complex with steep slopes and large vertical drop. Such a complex terrain makes it difficult to carry out observations. The lack of meteorological data becomes a key factor that limits the reliability of fine forecasts over the competition area, and poses a serious challenge for the winter Olympic Games meteorological service. Beijing Meteorological Bureau organized and conducted multi-scale integrated meteorological observations at the Haituo Mountain. These observations cover synoptic scale, valley scale and track scale with the aim of observing three-dimensional winds, temperature, humidity, cloud, visibility, surface turbulence, radiation, and so on. The comprehensive observations will improve our understanding of characteristics and mechanism of high-impact weather events in complex mountainous areas and provide data for improving the forecasting model. This paper systematically introduces the scientific objectives, observation layout, observation contents and preliminary observation and analysis results of the integrated meteorological observation system at the Haituo Mountain, and expounds the further research plan.
-
图 2 多手段风场观测:(a) 协同观测示意和 (b—e) 观测个例 (b. 自动气象站,c. 三维超声风速仪,d. 多普勒激光测风雷达,e. 风廓线仪;绿色箭头为探空)
Figure 2. Multi-method measurements of wind field:(a) schematic diagram of coordinated observation and (b—e) a case study,(b. automatic weather station,c. ultrasonic anemometer,d. doppler wind lidar,e. wind profiler;green arrows indicate automatic soundings)
表 1 海陀山冬奥气象综合观测平台仪器列表
Table 1. Key instruments used in the Haituo integrated meteorological field experiment
观测目标 观测设备 数量 仪器所在站点 仪器型号/厂家 仪器分辨率 云及降水监测 S波段天气雷达 1 海陀山顶 CINRAD/SA-D/北京敏视达雷达有限公司 6 min,250 m X波段天气雷达 3 张家口怀来、怀来东花园、延庆千家店 XDP937S/北京敏视达雷达有限公司;CLC-12SZ/南京恩瑞特实业有限公司 3 min,75 m;4.5 min,)150 m K波段微雨雷达 1 闫家坪 MRR-2/Metek 1 min,200 m Ka波段云雷达 2 西大庄科、闫家坪 HMB-KST/北京无线电测量研究所 ~0.25 s,30 m 激光云高仪 2 西大庄科、闫家坪 CL31/Vaisala 16 s,10 m 雨滴谱仪 2 西大庄科、闫家坪 2DVD/JOANNEUM <0.18 mm(水平),
<0.2 mm(垂直)全天空成像仪 1 闫家坪 ASI-16/EKO 5 s 温度湿度廓线 微波辐射计 2 西大庄科、闫家坪 MP3000/Radiometrics,MWP967KV/中兵人影 2 min(Radiometrics);
1 min(中兵);50 m(<0.5 km)/
100 m(0.5~2 km)/
250 m(2~10 km)大气辐射干涉仪 1 西大庄科 AERI/ABB公司 5 min,~10 m(近地表)/
~300 m(3 km高度)垂直风场 风廓线雷达 2 佛峪口、闫家坪 Airda-3000A/爱尔达; CFL-03/北京无线电测量研究所 2 min,50 m(<1 km)/
100 m(1~4.8 km);6 min,
100 m(0.1~5 km)激光测风雷达 4 西大庄科1部、冬奥延庆赛区核心区3部 WindPrint S4000/青岛华航(3部),WindCube 100-S/Leosphere(1部) 3~5 s,26 m(青岛);3~5 s,
20 m(Leosphere)自动探空仪 1 西大庄科 CF18ZDTK-4V-300/北京无线电测量研究所 2~6次/天 地面要素 自动气象观测站 16 西大庄科1套、冬奥延庆赛区核心区14套 DZZ4/航天新科技气象科技有限公司 1 min 涡动相关仪 1 西大庄科 CSAT3/Campbell,LI7500DS/LI-COR 30 min 三维超声风速仪 5 冬奥延庆赛区核心区 CSAT3/Campbell 1 min 水汽、二氧化碳分析仪 2 冬奥延庆赛区核心区 LI7500DS/LI-COR 1 min 摄像头 5 冬奥延庆赛区核心区 DS-2DE4223IW-D/海康卫视 实时 雪水当量 3 冬奥延庆赛区核心区 SPA-2/北京华益瑞科技有限公司 30 min 四分量辐射表 1 西大庄科 CNR1/Kippzonen 30 min 表 2 激光测风雷达和探空风场对比结果
Table 2. Wind field comparison between observations of doppler wind lidar and radiosonde
风速偏差(m/s) 风速绝对偏差(m/s) 风向偏差(°) 平均偏差 标准差 平均偏差 标准差 平均偏差 标准差 全样本 −0.36 3.51 2.19 2.76 24.49 38.67 漂移距离(D<10 km) −0.54 3.13 1.96 2.49 19.75 31.31 漂移距离(D<5 km) −0.28 2.54 1.60 2.00 17.28 25.58 漂移距离(D<3 km) −0.04 2.40 1.44 1.91 16.46 21.03 漂移距离(D<1 km) 0.28 1.58 1.07 1.19 18.30 20.88 -
黄兴友,夏俊荣,卜令兵等. 2013. 云底高度的激光云高仪、红外测云仪以及云雷达观测比对分析. 量子电子学报,30(1):73-78Huang X Y,Xia J R,Bu L B,et al. 2013. Comparison and analysis of cloud base height measured by ceilometer,infrared cloud measuring system and cloud radar. Chinese J Quantum Electron,30(1):73-78 (in Chinese) 贾春晖,窦晶晶,苗世光等. 2019. 延庆-张家口地区复杂地形冬季山谷风特征分析. 气象学报,77(3):475-488Jia C H,Dou J J,Miao SH,et al. 2019. Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing-Zhangjiakou in the winter. Acta Meteor Sinica,77(3):475-488 李炬,程志刚,张京江等. 2020. 小海坨山冬奥赛场气象观测试验及初步结果分析. 气象,46(9):1178-1188Li J,Cheng Z G,Zhang J J,et al. 2020. Meteorological field experiment and preliminary analysis result in the Winter Olympic Venue in Xiaohaituo Mountain. Meteor Mon,46(9):1178-1188 (in Chinese) 刘雨佳,陈洪滨,朱君鉴. 2014. 山东省S波段与C波段天气雷达回波强度的对比分析. 气象科学,34(1):87-95Liu Y J,Chen H B,Zhu J J. 2014. Comparative analysis of S and C-band radar reflectivity data in Shandong province. J Meteor Sci,34(1):87-95 (in Chinese) 王倩倩,权建农,程志刚等. 2022. 2019年冬季北京海陀山局地环流特征及机理分析. 气象学报,80(1):93-107 doi: 10.11676/qxxb2022.005Wang Q Q,Quan J N,Cheng Z G,et al. 2022. Local circulation characteristics and mechanism analysis of Haituo mountain in Beijing during winter 2019. Acta Meteor Sinica,80(1):93-107 (in Chinese) doi: 10.11676/qxxb2022.005 乌日柴胡,王建捷,孙靖等. 2019. 北京山区与平原冬季近地面风的精细观测特征. 气象学报,77(6):1107-1123Wu R C H,Wang J J,Sun J,et al. 2019. An observational investigation of fine features of near surface winds in winter over Beijing area. Acta Meteor Sinica,77(6):1107-1123 喜度,王凌震. 2019. S波段多普勒天气雷达对小滴谱降水探测能力的探讨. 科技与创新,(4):65-66Xi D,Wang L Z. 2019. Discussion on the detection ability of S-band doppler weather radar to droplet spectrum precipitation. Sci Technol Innovation,(4):65-66 (in Chinese) 熊敏诠,冯文,刘凑华. 2022. 冬奥延庆赛区风的预报技巧比较分析. 气象学报,80(2):289-303Xiong M Q,Feng W,Liu C H. 2022. Analysis of wind prediction skills for the Winter Olympics playing area in Yanqing Beijing. Acta Meteor Sinica,80(2):289-303 (in Chinese) 仲凌志,刘黎平,葛润生. 2009. 毫米波测云雷达的特点及其研究现状与展望. 地球科学进展,24(4):383-391Zhong L Z,Liu L P,Ge R S. 2009. Characteristics about the millimeter-wavelength radar and its status and prospect in and abroad. Adv Earth Sci,24(4):383-391 (in Chinese) Chen M X,Quan J N,Miao S G,et al. 2018. Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull,67(2):58-61 Chen Y C,Liu X E,Bi K,et al. 2021. Hydrometeor classification of winter precipitation in northern China based on multi-platform radar observation system. Remote Sens,13(24):5070 doi: 10.3390/rs13245070 Horel J,Potter T,Dunn L,et al. 2002. Weather support for the 2002 winter Olympic and Paralympic games. Bull Amer Meteor Soc,83(2):227-240 doi: 10.1175/1520-0477(2002)083<0227:WSFTWO>2.3.CO;2 Isaac G A,Joe P I,Mailhot J,et al. 2014. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10):a world weather research programme project. Pure Appl Geophys,171(1-2):1-24 doi: 10.1007/s00024-012-0579-0 Kiktev D,Joe P,Isaac G A,et al. 2017. FROST-2014:the Sochi winter Olympics international project. Bull Amer Meteor Soc,98(9):1908-1929 doi: 10.1175/BAMS-D-15-00307.1 Kingston G. 2010. Downhill training run fogged out, Vancouver Sun, February 11, C3; Another delay, but the forecast is promising, Vancouver Sun, February 17, D6; Women on hold at Whistler as fog shrouds giant slalom, Vancouver Sun, February 25, D11; Three-day wait for training runs nothing new for downhill skier, Vancouver Sun, March 13, A16 Knuteson R O,Revercomb H E,Best F A,et al. 2004. Atmospheric emitted radiance interferometer. Part I:instrument design. J Atmos Oceanic Technol,21(12):1763-1776 doi: 10.1175/JTECH-1662.1 Kollias P,Clothiaux E E,Miller M A,et al. 2007. Millimeter-wavelength radars:new frontier in atmospheric cloud and precipitation research. Bull Amer Meteor Soc,88(10):1608-1624 doi: 10.1175/BAMS-88-10-1608 Lhermitte R M. 1987. Small cumuli observed with a 3 mm wavelength Doppler radar. Geophys Res Lett,14(7):707-710 doi: 10.1029/GL014i007p00707 Löhnert U,Turner D D,Crewell S. 2009. Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I:simulated retrieval performance in clear-sky conditions. J Appl Meteor Climatol,48(5):1017-1032 doi: 10.1175/2008JAMC2060.1 McBeth P B,Ball C G,Mulloy R H,et al. 2009. Alpine ski and snowboarding traumatic injuries:incidence,injury patterns,and risk factors for 10 years. Am J Surg,197(5):560-564 doi: 10.1016/j.amjsurg.2008.12.016 Mo R P,Joe P,Isaac G A,et al. 2014. Mid-mountain clouds at whistler during the Vancouver 2010 winter Olympics and Paralympics. Pure Appl Geophys,171(1-2):157-183 doi: 10.1007/s00024-012-0540-2 Pan L L,Lü D R. 2014. Retrievals of atmospheric boundary layer temperature and moisture profiles by using Atmospheric Emitted Radiance Interferometer (AERI) measurements in Shouxian. Chinese Sci Bull,59(8):795-801 doi: 10.1007/s11434-013-0070-z Shatunova M V,Rivin G S,Rozinkina I A. 2015. Visibility forecasting for February 16–18,2014 for the region of the Sochi-2014 Olympic Games using the high-resolution COSMO-Ru1 model. Russ Meteor Hydrol,40(8):523-530 doi: 10.3103/S106837391508004X Shupe M D. 2007. A ground-based multisensor cloud phase classifier. Geophys Res Lett,34(22):L22809 doi: 10.1029/2007GL031008 Shupe M D,Daniel J S,de Boer G,et al. 2008. A focus on mixed-phase clouds:the status of ground-based observational methods. Bull Amer Meteor Soc,89(10):1549-1562 doi: 10.1175/2008BAMS2378.1 Teakles A,Mo R P,Dierking C F,et al. 2014. Realizing user-relevant conceptual model for the ski jump venue of the Vancouver 2010 Winter Olympics. Pure Appl Geophys,171(1-2):185-207 doi: 10.1007/s00024-012-0544-y Venema V, Russchenberg H, Apituley A, et al. 2000. Cloud boundary height measurements using lidar and radar. Phys Chem Earth, Part B: Hydrol, Oceans Atmos, 25(2): 129-134 Virmavirta M,Kivekäs J. 2012. The effect of wind on jumping distance in ski jumping–fairness assessed. Sports Biomech,11(3):358-369 doi: 10.1080/14763141.2011.637119 Wang Z E,Sassen K. 2001. Cloud type and macrophysical property retrieval using multiple remote sensors. J Appl Meteor,40(10):1665-1682 doi: 10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2 -