留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海陀山冬奥气象综合观测平台及研究进展

王倩倩 陈羿辰 程志刚 于波 常晨 张曼 李思腾 罗丽 伍永学 潘昱冰 李炬 张京江 廖志恒 窦有俊 权建农

王倩倩,陈羿辰,程志刚,于波,常晨,张曼,李思腾,罗丽,伍永学,潘昱冰,李炬,张京江,廖志恒,窦有俊,权建农. 2023. 海陀山冬奥气象综合观测平台及研究进展. 气象学报,81(1):1-17 doi: 10.11676/qxxb2023.20220029
引用本文: 王倩倩,陈羿辰,程志刚,于波,常晨,张曼,李思腾,罗丽,伍永学,潘昱冰,李炬,张京江,廖志恒,窦有俊,权建农. 2023. 海陀山冬奥气象综合观测平台及研究进展. 气象学报,81(1):1-17 doi: 10.11676/qxxb2023.20220029
Wang Qianqian, Chen Yichen, Cheng Zhigang, Yu Bo, Chang Chen, Zhang Man, Li Siteng, Luo Li, Wu Yongxue, Pan Yubing, Li Ju, Zhang Jingjiang, Liao Zhiheng, Dou Youjun, Quan Jiannong. 2023. Winter Olympic comprehensive meteorological observation platform of Haituo Mountain and the research progress. Acta Meteorologica Sinica, 81(1):1-17 doi: 10.11676/qxxb2023.20220029
Citation: Wang Qianqian, Chen Yichen, Cheng Zhigang, Yu Bo, Chang Chen, Zhang Man, Li Siteng, Luo Li, Wu Yongxue, Pan Yubing, Li Ju, Zhang Jingjiang, Liao Zhiheng, Dou Youjun, Quan Jiannong. 2023. Winter Olympic comprehensive meteorological observation platform of Haituo Mountain and the research progress. Acta Meteorologica Sinica, 81(1):1-17 doi: 10.11676/qxxb2023.20220029

海陀山冬奥气象综合观测平台及研究进展

doi: 10.11676/qxxb2023.20220029
基金项目: 国家重点研发计划项目(2018YFF0300101-2)、北京市自然科学基金项目(8204062)
详细信息
    作者简介:

    王倩倩,主要从事地面遥感观测和气溶胶-对流相互作用方面的研究。E-mail:qqwang@ium.cn 联系电话:18001072730

    通讯作者:

    权建农, 主要从事气象观测、气溶胶、雾霾和大气边界层领域的研究。E-mail:jnquan@ium.cn

  • 中图分类号: P411

Winter Olympic comprehensive meteorological observation platform of Haituo Mountain and the research progress

  • 摘要: 气象保障是历届冬奥会成功举办的最重要条件之一。延庆赛区(位于延庆海陀山区)地形复杂、山高坡陡、垂直落差大,因而观测难度大、气象数据稀少,成为影响赛区精细化预报的核心因素,对冬奥气象服务提出了严峻挑战。为此,北京市气象局组织开展了冬奥海陀山综合气象观测,针对该区复杂地形和多尺度气象影响系统构建了包含中、小、微尺度的三维立体实时综合观测平台,观测要素涵盖了三维风场、温湿度场、云和能见度、近地面湍流与辐射等。综合观测将提高对复杂山区高影响天气特征和机理的认知,为改进和提高预报模式提供数据支撑。文章系统介绍了海陀山冬奥气象综合观测平台的科学目标、观测布局、观测内容、以及观测平台在降雪过程中的初步应用,最后阐述了基于该观测进一步开展的研究计划。

     

  • 图 1  海陀山冬奥气象综合观测布局与观测设备,涵盖了中尺度 (a)、小尺度 (b) 和微尺度 (c)

    Figure 1.  Layout of integrated meteorological field experiments over the Haituo Mountain,including mesoscale (a),small scale (b) and microscale (c)

    图 2  多手段风场观测:(a) 协同观测示意和 (b—e) 观测个例 (b. 自动气象站,c. 三维超声风速仪,d. 多普勒激光测风雷达,e. 风廓线仪;绿色箭头为探空)

    Figure 2.  Multi-method measurements of wind field:(a) schematic diagram of coordinated observation and (b—e) a case study,(b. automatic weather station,c. ultrasonic anemometer,d. doppler wind lidar,e. wind profiler;green arrows indicate automatic soundings)

    Continued

    图 3  激光测风雷达与探空风场对比方法

    Figure 3.  Comparison of algorithms for doppler wind lidar and wind field sounding

    图 4  激光测风雷达与探空风向、风速对比(a),探空气球相对激光测风雷达漂移距离(b)和气球漂移路径(c)

    Figure 4.  Comparison of wind fields from doppler wind lidar observations and soundings (a) ,sounding drift distance (b),and drift path (c)

    图 5  大气温、湿度多手段协同观测示意

    Figure 5.  Schematic diagram of coordinated observation of atmospheric temperature and humidity

    图 6  多手段 (a、b. 自动气象站,c、d. 大气辐射干涉仪,e、f. 微波辐射计) 观测的温度 (a、c、e) 和湿度 (b、d、f) 廓线

    Figure 6.  Multi-method (a,b. automatic weather station (AWS);c,d. atmospheric emitted radiance interferometer (AERI);e,f. microwave radiometer (MWR)) observations of temperature (a,c,e) and humidity (b,d,f) profiles

    图 7  云和降水多手段协同观测示意

    Figure 7.  Schematic diagram of coordinated observation of cloud and precipitation

    图 8  云高仪 (a) 和云雷达 (b) 协同观测实例 (红、黑点分别表示云底、云顶)

    Figure 8.  Coordinated observations based on ceilometer (a) and cloud radar (b)(red (black) dots represent cloud base (top) derived from ceilometer (millimeter wave cloud radar)

    图 9  2021年3月17日云雷达 (a、d)、微雨雷达 (b、e)、S波段雷达 (c、f) 反射率垂直结构 (a—c) 和定量评估 (d—f)

    Figure 9.  Vertical structures (a—c) and quantitative evaluations (d—f) of radar reflectivity based on millimeter wave cloud radar (MMCR)(a,d),micro rain radar (MRR) (b,e) and S-band Doppler weather radar (c,f) on 17 March 2021

    图 10  2021年3月17—18日 (a) 北京各区降水量和 (b) 海陀山降水量日变化

    Figure 10.  Precipitation in individual districts (a) and diurnal variation of precipitation at the Haituo Mountain from 17 to 18 March 2021

    图 11  A1701站点风场垂直结构演变

    Figure 11.  Diurnal variation of the vertical structure of wind field at A1701 station

    图 12  海陀山S波段天气雷达回波强度 (黑点 (红色三角形) 代表S波段天气雷达 (云雷达) 位置)

    Figure 12.  Echo intensity of S-band weather radar at Haituo mountain (black dot (red triangle) indicate the location of S-band doppler weather radar (millimeter wave cloud radar))

    图 13  云雷达的 (a) 反射率、(b) 退偏振比、(c) 速度和 (d) 速度谱宽

    Figure 13.  Cloud radar variables (a. radar reflectivity (Z),b. linear depolarization ratio (LDR),c. radial velocity (V),d.velocity spectral width (SW))

    图 14  云雷达 (a) 粒子相态识别结果、(b) 粒子有效半径和 (c) 冰水含量

    Figure 14.  Parameters derived from cloud radar (a. particle phase identification result,b. particle effective radius,c. ice water content)

    表  1  海陀山冬奥气象综合观测平台仪器列表

    Table  1.   Key instruments used in the Haituo integrated meteorological field experiment

    观测目标观测设备数量仪器所在站点仪器型号/厂家仪器分辨率
    云及降水监测S波段天气雷达1海陀山顶CINRAD/SA-D/北京敏视达雷达有限公司6 min,250 m
    X波段天气雷达3张家口怀来、怀来东花园、延庆千家店XDP937S/北京敏视达雷达有限公司;CLC-12SZ/南京恩瑞特实业有限公司3 min,75 m;4.5 min,)150 m
    K波段微雨雷达1闫家坪MRR-2/Metek1 min,200 m
    Ka波段云雷达2西大庄科、闫家坪HMB-KST/北京无线电测量研究所~0.25 s,30 m
    激光云高仪2西大庄科、闫家坪CL31/Vaisala16 s,10 m
    雨滴谱仪2西大庄科、闫家坪2DVD/JOANNEUM<0.18 mm(水平),
    <0.2 mm(垂直)
    全天空成像仪1闫家坪ASI-16/EKO5 s
    温度湿度廓线微波辐射计2西大庄科、闫家坪MP3000/Radiometrics,MWP967KV/中兵人影2 min(Radiometrics);
    1 min(中兵);50 m(<0.5 km)/
    100 m(0.5~2 km)/
    250 m(2~10 km)
    大气辐射干涉仪1西大庄科AERI/ABB公司5 min,~10 m(近地表)/
    ~300 m(3 km高度)
    垂直风场风廓线雷达2佛峪口、闫家坪Airda-3000A/爱尔达; CFL-03/北京无线电测量研究所2 min,50 m(<1 km)/
    100 m(1~4.8 km);6 min,
    100 m(0.1~5 km)
    激光测风雷达4西大庄科1部、冬奥延庆赛区核心区3部WindPrint S4000/青岛华航(3部),WindCube 100-S/Leosphere(1部)3~5 s,26 m(青岛);3~5 s,
    20 m(Leosphere)
    自动探空仪1西大庄科CF18ZDTK-4V-300/北京无线电测量研究所2~6次/天
    地面要素自动气象观测站16西大庄科1套、冬奥延庆赛区核心区14套DZZ4/航天新科技气象科技有限公司1 min
    涡动相关仪1西大庄科CSAT3/Campbell,LI7500DS/LI-COR30 min
    三维超声风速仪5冬奥延庆赛区核心区CSAT3/Campbell1 min
    水汽、二氧化碳分析仪2冬奥延庆赛区核心区LI7500DS/LI-COR1 min
    摄像头5冬奥延庆赛区核心区DS-2DE4223IW-D/海康卫视实时
    雪水当量3冬奥延庆赛区核心区SPA-2/北京华益瑞科技有限公司30 min
    四分量辐射表1西大庄科CNR1/Kippzonen30 min
    下载: 导出CSV

    表  2  激光测风雷达和探空风场对比结果

    Table  2.   Wind field comparison between observations of doppler wind lidar and radiosonde

    风速偏差(m/s)风速绝对偏差(m/s)风向偏差(°)
    平均偏差标准差平均偏差标准差平均偏差标准差
    全样本−0.363.512.192.7624.4938.67
    漂移距离(D<10 km)−0.543.131.962.4919.7531.31
    漂移距离(D<5 km)−0.282.541.602.0017.2825.58
    漂移距离(D<3 km)−0.042.401.441.9116.4621.03
    漂移距离(D<1 km)0.281.581.071.1918.3020.88
    下载: 导出CSV
  • 黄兴友,夏俊荣,卜令兵等. 2013. 云底高度的激光云高仪、红外测云仪以及云雷达观测比对分析. 量子电子学报,30(1):73-78

    Huang X Y,Xia J R,Bu L B,et al. 2013. Comparison and analysis of cloud base height measured by ceilometer,infrared cloud measuring system and cloud radar. Chinese J Quantum Electron,30(1):73-78 (in Chinese)
    贾春晖,窦晶晶,苗世光等. 2019. 延庆-张家口地区复杂地形冬季山谷风特征分析. 气象学报,77(3):475-488

    Jia C H,Dou J J,Miao SH,et al. 2019. Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing-Zhangjiakou in the winter. Acta Meteor Sinica,77(3):475-488
    李炬,程志刚,张京江等. 2020. 小海坨山冬奥赛场气象观测试验及初步结果分析. 气象,46(9):1178-1188

    Li J,Cheng Z G,Zhang J J,et al. 2020. Meteorological field experiment and preliminary analysis result in the Winter Olympic Venue in Xiaohaituo Mountain. Meteor Mon,46(9):1178-1188 (in Chinese)
    刘雨佳,陈洪滨,朱君鉴. 2014. 山东省S波段与C波段天气雷达回波强度的对比分析. 气象科学,34(1):87-95

    Liu Y J,Chen H B,Zhu J J. 2014. Comparative analysis of S and C-band radar reflectivity data in Shandong province. J Meteor Sci,34(1):87-95 (in Chinese)
    王倩倩,权建农,程志刚等. 2022. 2019年冬季北京海陀山局地环流特征及机理分析. 气象学报,80(1):93-107 doi: 10.11676/qxxb2022.005

    Wang Q Q,Quan J N,Cheng Z G,et al. 2022. Local circulation characteristics and mechanism analysis of Haituo mountain in Beijing during winter 2019. Acta Meteor Sinica,80(1):93-107 (in Chinese) doi: 10.11676/qxxb2022.005
    乌日柴胡,王建捷,孙靖等. 2019. 北京山区与平原冬季近地面风的精细观测特征. 气象学报,77(6):1107-1123

    Wu R C H,Wang J J,Sun J,et al. 2019. An observational investigation of fine features of near surface winds in winter over Beijing area. Acta Meteor Sinica,77(6):1107-1123
    喜度,王凌震. 2019. S波段多普勒天气雷达对小滴谱降水探测能力的探讨. 科技与创新,(4):65-66

    Xi D,Wang L Z. 2019. Discussion on the detection ability of S-band doppler weather radar to droplet spectrum precipitation. Sci Technol Innovation,(4):65-66 (in Chinese)
    熊敏诠,冯文,刘凑华. 2022. 冬奥延庆赛区风的预报技巧比较分析. 气象学报,80(2):289-303

    Xiong M Q,Feng W,Liu C H. 2022. Analysis of wind prediction skills for the Winter Olympics playing area in Yanqing Beijing. Acta Meteor Sinica,80(2):289-303 (in Chinese)
    仲凌志,刘黎平,葛润生. 2009. 毫米波测云雷达的特点及其研究现状与展望. 地球科学进展,24(4):383-391

    Zhong L Z,Liu L P,Ge R S. 2009. Characteristics about the millimeter-wavelength radar and its status and prospect in and abroad. Adv Earth Sci,24(4):383-391 (in Chinese)
    Chen M X,Quan J N,Miao S G,et al. 2018. Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull,67(2):58-61
    Chen Y C,Liu X E,Bi K,et al. 2021. Hydrometeor classification of winter precipitation in northern China based on multi-platform radar observation system. Remote Sens,13(24):5070 doi: 10.3390/rs13245070
    Horel J,Potter T,Dunn L,et al. 2002. Weather support for the 2002 winter Olympic and Paralympic games. Bull Amer Meteor Soc,83(2):227-240 doi: 10.1175/1520-0477(2002)083<0227:WSFTWO>2.3.CO;2
    Isaac G A,Joe P I,Mailhot J,et al. 2014. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10):a world weather research programme project. Pure Appl Geophys,171(1-2):1-24 doi: 10.1007/s00024-012-0579-0
    Kiktev D,Joe P,Isaac G A,et al. 2017. FROST-2014:the Sochi winter Olympics international project. Bull Amer Meteor Soc,98(9):1908-1929 doi: 10.1175/BAMS-D-15-00307.1
    Kingston G. 2010. Downhill training run fogged out, Vancouver Sun, February 11, C3; Another delay, but the forecast is promising, Vancouver Sun, February 17, D6; Women on hold at Whistler as fog shrouds giant slalom, Vancouver Sun, February 25, D11; Three-day wait for training runs nothing new for downhill skier, Vancouver Sun, March 13, A16
    Knuteson R O,Revercomb H E,Best F A,et al. 2004. Atmospheric emitted radiance interferometer. Part I:instrument design. J Atmos Oceanic Technol,21(12):1763-1776 doi: 10.1175/JTECH-1662.1
    Kollias P,Clothiaux E E,Miller M A,et al. 2007. Millimeter-wavelength radars:new frontier in atmospheric cloud and precipitation research. Bull Amer Meteor Soc,88(10):1608-1624 doi: 10.1175/BAMS-88-10-1608
    Lhermitte R M. 1987. Small cumuli observed with a 3 mm wavelength Doppler radar. Geophys Res Lett,14(7):707-710 doi: 10.1029/GL014i007p00707
    Löhnert U,Turner D D,Crewell S. 2009. Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I:simulated retrieval performance in clear-sky conditions. J Appl Meteor Climatol,48(5):1017-1032 doi: 10.1175/2008JAMC2060.1
    McBeth P B,Ball C G,Mulloy R H,et al. 2009. Alpine ski and snowboarding traumatic injuries:incidence,injury patterns,and risk factors for 10 years. Am J Surg,197(5):560-564 doi: 10.1016/j.amjsurg.2008.12.016
    Mo R P,Joe P,Isaac G A,et al. 2014. Mid-mountain clouds at whistler during the Vancouver 2010 winter Olympics and Paralympics. Pure Appl Geophys,171(1-2):157-183 doi: 10.1007/s00024-012-0540-2
    Pan L L,Lü D R. 2014. Retrievals of atmospheric boundary layer temperature and moisture profiles by using Atmospheric Emitted Radiance Interferometer (AERI) measurements in Shouxian. Chinese Sci Bull,59(8):795-801 doi: 10.1007/s11434-013-0070-z
    Shatunova M V,Rivin G S,Rozinkina I A. 2015. Visibility forecasting for February 16–18,2014 for the region of the Sochi-2014 Olympic Games using the high-resolution COSMO-Ru1 model. Russ Meteor Hydrol,40(8):523-530 doi: 10.3103/S106837391508004X
    Shupe M D. 2007. A ground-based multisensor cloud phase classifier. Geophys Res Lett,34(22):L22809 doi: 10.1029/2007GL031008
    Shupe M D,Daniel J S,de Boer G,et al. 2008. A focus on mixed-phase clouds:the status of ground-based observational methods. Bull Amer Meteor Soc,89(10):1549-1562 doi: 10.1175/2008BAMS2378.1
    Teakles A,Mo R P,Dierking C F,et al. 2014. Realizing user-relevant conceptual model for the ski jump venue of the Vancouver 2010 Winter Olympics. Pure Appl Geophys,171(1-2):185-207 doi: 10.1007/s00024-012-0544-y
    Venema V, Russchenberg H, Apituley A, et al. 2000. Cloud boundary height measurements using lidar and radar. Phys Chem Earth, Part B: Hydrol, Oceans Atmos, 25(2): 129-134
    Virmavirta M,Kivekäs J. 2012. The effect of wind on jumping distance in ski jumping–fairness assessed. Sports Biomech,11(3):358-369 doi: 10.1080/14763141.2011.637119
    Wang Z E,Sassen K. 2001. Cloud type and macrophysical property retrieval using multiple remote sensors. J Appl Meteor,40(10):1665-1682 doi: 10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  22
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 录用日期:  2022-12-30
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-07-01

目录

    /

    返回文章
    返回