留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国南方降水及其极端事件的动力-统计相结合的延伸期预报

张可越 李娟 徐邦琪 朱志伟

张可越,李娟,徐邦琪,朱志伟. 2023. 中国南方降水及其极端事件的动力-统计相结合的延伸期预报. 气象学报,81(1):1-15 doi: 10.11676/qxxb2023.20220061
引用本文: 张可越,李娟,徐邦琪,朱志伟. 2023. 中国南方降水及其极端事件的动力-统计相结合的延伸期预报. 气象学报,81(1):1-15 doi: 10.11676/qxxb2023.20220061
Zhang Keyue, Li Juan, Hsu Pang-chi, Zhu Zhiwei. 2023. The dynamical-statistical extended-range prediction of precipitation and extreme precipitation events over southern China. Acta Meteorologica Sinica, 81(1):1-15 doi: 10.11676/qxxb2023.20220061
Citation: Zhang Keyue, Li Juan, Hsu Pang-chi, Zhu Zhiwei. 2023. The dynamical-statistical extended-range prediction of precipitation and extreme precipitation events over southern China. Acta Meteorologica Sinica, 81(1):1-15 doi: 10.11676/qxxb2023.20220061

中国南方降水及其极端事件的动力-统计相结合的延伸期预报

doi: 10.11676/qxxb2023.20220061
基金项目: 国家自然科学基金基础科学中心项目(42088101)、国家重点研发计划重点专项(2018YFC1505803)
详细信息
    作者简介:

    张可越,主要从事极端天气气候的次季节预测研究。E-mail:kyzhang@nuist.edu.cn

    通讯作者:

    李娟,主要从事极端天气气候事件机理,次季节至年代际预测研究。E-mail:juanl@nuist.edu.cn

  • 中图分类号: P456.9

The dynamical-statistical extended-range prediction of precipitation and extreme precipitation events over southern China

  • 摘要: 延伸期预报是无缝隙预测系统中的薄弱环节,如何提高灾害天气过程的延伸期预报技巧是国际热点及前沿问题。本研究基于2005年12月—2014年8月的观测/再分析资料,通过奇异值分解方法,揭示了与中国南方低频降水变化高度耦合的热带对流和中纬度波列信号。利用中国气象局参加国际次季节至季节预报计划模式(BCC-CPS-S2Sv2模式,简称BCC S2S模式)的回报数据,对中国南方低频降水异常场进行统计降尺度,构建了一套动力-统计相结合的延伸期降水预测模型。独立预测时段(2014年12月—2019年8月)的结果表明,BCC S2S模式可以提前10—15 d预报中国南方大部分区域的异常降水;提前15—20 d以上预报时,动力-统计结合预报模型对冬季(夏季)华南沿海地区(长江以北地区)的降水时间演变、降水空间分布及极端强降水事件的预报技巧均优于BCC S2S模式。文中提出的思路和方法可广泛应用于其他区域气象要素和极端天气事件的延伸期预报。

     

  • 图 1  2006—2014年冬季逐日低频的奇异值分解第一奇异向量场向外长波辐射 (a1)、降水 (a2) 与H500 (b1)、降水 (b2)(色阶;矢量表示700 hPa风场对左奇异向量场标准化时间展开系数的回归场 (只显示了大于0.1 m/s的风场异常;单位:m/s)) 及标准化时间系数序列 (a3、b3,蓝色虚线(红色实线) 表示左 (右) 奇异向量场,黑色虚线表示2倍标准差)

    Figure 1.  The first SVD modes of low-frequency OLR (a1) and precipitation (a2),H500 (b1)-precipitation (b2) in the winters of 2006—2014 (the blue dash (red solid) line denotes the normalized temporal coefficient of the left (right) SVD mode( a3,b3)(the vectors indicate 700 hPa horizontal winds regressed onto the normalized temporal coefficient of left SVD mode (only values greater than 0.1 m/s are shown;unit:m/s),the black dashed lines represent two standard deviations)

    图 2  物理因子被完全准确预测时 (即为观测值) 统计预报对 (a) 冬季和 (b) 夏季低频降水在独立预报时段的TCC分布 (斜线表示TCC通过了95%显著性t检验的区域;数值为TCC的区域平均)

    Figure 2.  Spatial distributions of low-frequency precipitation TCC over southern China during independent forecast period in (a) winter and (b) summer when the physical factors are correctly predicted (i.e.,physical factors are observations)(the slashed areas indicate the regions with TCC significant at the 95% level by t-test,the area averaged TCC are shown in the upper right corner of individual panels)

    图 3  2015—2019年冬季 (a) 动力-统计相结合模式、(b) 动力模式对提前10 (a1—c1)、15 (a2—c2)、20 (a3—c3)、25 (a4—c4)、30 (a5—c5) d中国南方低频降水的TCC技巧 (数值为区域平均) 及 (c)动力-统计相结合模式与动力模式TCC技巧之差

    Figure 3.  Spatial distributions of TCC over southern China at 10 (a1—c1)、15 (a2—c2)、20 (a3—c3)、25 (a4—c4)、30 (a5—c5) days forecast lead times during the winters of 2015—2019 by (a) dynamical-statistical model,(b) dynamical model and (c) differences between (a) and (b)(the area averaged TCC are shown in the upper right corner in (a) and (b))

    图 4  2015—2019年冬季中国南方动力模式和动力-统计相结合模式预报的 (a) 区域平均TCC技巧与 (b) 时间平均PCC技巧

    Figure 4.  (a) Area averaged TCC and (b) temporally averaged PCC over southern China during the winters of 2015—2019 from the dynamical and dynamical-statistical models

    图 5  同图1,但是为夏季

    Figure 5.  Same as Fig. 1 but for the summer

    图 6  同图3但为夏季

    Figure 6.  Same as Fig. 3 but for the summer

    图 7  同图4但为夏季

    Figure 7.  Same as Fig. 4 but for the summer

    图 8  2015—2019年 (a) 冬季和 (b) 夏季动力模式和动力-统计相结合模式对中国南方区域极端降水事件预报的TS技巧

    Figure 8.  TS skills for the prediction of regional extreme precipitation events over southern China by dynamical and dynamical-statistical models during (a) winter and (b) summer over the period 2015—2019

  • 孔锋,方建,孙劭等. 2019. 基于超阈值取样的中国不同重现期降雨强度空间分异特征及强降雨变化模态(1961—2016年). 长江流域资源与环境,28(1):144-156

    Kong F,Fang J,Sun S,et al. 2019. Spatial variability of different return period of rainfall intensity and variation patterns of heavy rainfall in China from 1961 to 2016 based on POT sampling. Resour Environ Yangtze Basin,28(1):144-156 (in Chinese)
    林爱兰,谷德军,彭冬冬等. 2020. 体现大尺度特征的区域持续性强降水过程定义指标. 热带气象学报,36(3):289-298 doi: 10.16032/j.issn.1004-4965.2020.014

    Lin A L,Gu D J,Peng D D,et al. 2020. A definition index reflecting large-scale characteristics of regional persistent heavy rainfall events. J Trop Meteor,36(3):289-298 (in Chinese) doi: 10.16032/j.issn.1004-4965.2020.014
    陶诗言. 1980. 中国之暴雨. 北京: 科学出版社, 225pp. Tao S Y. 1980. Torrential Rain in China. Beijing: Science Press, 225pp (in Chinese)
    陶诗言,卫捷. 2008. 2008年1月我国南方严重冰雪灾害过程分析. 气候与环境研究,13(4):337-350

    Tao S Y,Wei J. 2008. Severe snow and freezing-rain in January 2008 in the Southern China. Climatic Environ Res,13(4):337-350 (in Chinese)
    汪汇洁,孙建华,卫捷等. 2014. 近30年我国南方区域持续性暴雨过程的分类研究. 气候与环境研究,19(6):713-725 doi: 10.3878/j.issn.1006-9585.2013.13143

    Wang H J,Sun J H,Wei J,et al. 2014. Classification of persistent heavy rainfall events over southern China during recent 30 years. Climatic Environ Res,19(6):713-725 (in Chinese) doi: 10.3878/j.issn.1006-9585.2013.13143
    吴佳,高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报,56(4):1102-1111 doi: 10.6038/cjg20130406

    Wu J,Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J Geophys,56(4):1102-1111 (in Chinese) doi: 10.6038/cjg20130406
    徐邦琪,臧钰歆,朱志伟等. 2020. 时空投影模型(STPM)的次季节至季节(S2S)预测应用进展. 大气科学学报,43(1):212-224 doi: 10.13878/j.cnki.dqkxxb.20191028002

    Hsu P C,Zang Y X,Zhu Z W,et al. 2020. Subseasonal-to-seasonal (S2S) prediction using the spatial-temporal projection model (STPM). Trans Atmos Sci,43(1):212-224 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20191028002
    杨秋明. 2014. 基于20—30 d振荡的长江下游地区夏季低频降水延伸期预报方法研究. 气象学报,72(3):494-507 doi: 10.11676/qxxb2014.028

    Yang Q M. 2014. Study of the method of the extended-range forecast for the low frequency rainfall over the lower reaches of the Yangtze River in summer based on the 20−30 day oscillation. Acta Meteor Sinica,72(3):494-507 (in Chinese) doi: 10.11676/qxxb2014.028
    杨秋明. 2018. 长江下游夏季低频温度和高温天气的延伸期预报研究. 地球科学进展,33(4):385-395 doi: 10.11867/j.issn.1001-8166.2018.04.0385

    Yang Q M. 2018. A study of the extended-range forecast for the low frequency temperature and high temperature weather over the lower reaches of Yangtze River Valley in summer. Adv Earth Sci,33(4):385-395 (in Chinese) doi: 10.11867/j.issn.1001-8166.2018.04.0385
    翟盘茂,潘晓华. 2003. 中国北方近50年温度和降水极端事件变化. 地理学报,58(S1):1-10

    Zhai P M,Pan X H. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geogr Sinica,58(S1):1-10 (in Chinese)
    Baggett C F,Barnes E A,Maloney E D,et al. 2017. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys Res Lett,44(14):7528-7536 doi: 10.1002/2017GL074434
    Bretherton C S,Widmann M,Dymnikov V P,et al. 1999. The effective number of spatial degrees of freedom of a time-varying field. J Climate,12(7):1990-2009 doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
    Brunet G,Shapiro M,Hoskins B,et al. 2010. Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull Amer Meteor Soc,91(10):1397-1406 doi: 10.1175/2010BAMS3013.1
    Chen Y,Zhai P M. 2013. Persistent extreme precipitation events in China during 1951-2010. Clim Res,57(2):143-155 doi: 10.3354/cr01171
    Domrös M,Peng G. 1988. The Climate of China. Berlin:Springer-Verlag,361
    Ford T W,Dirmeyer P A,Benson D O. 2018. Evaluation of heat wave forecasts seamlessly across subseasonal timescales. npj Climate Atmos Sci,1(1):20 doi: 10.1038/s41612-018-0027-7
    Gao M N,Yang J,Wang B,et al. 2018. How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation?. Climate Dyn,51(11-12):4421-4437 doi: 10.1007/s00382-017-3526-z
    Gu X Z,Ye L,Xin Q,et al. 2022. Extreme precipitation in China:A review on statistical methods and applications. Adv Water Resour,163:104144 doi: 10.1016/j.advwatres.2022.104144
    He J L,Lin H,Wu Z W. 2011. Another look at influences of the Madden-Julian Oscillation on the wintertime East Asian weather. J Geophys Res,116(D3):D03109
    Hersbach H,Bell B,Berrisford P,et al. 2020. The ERA5 global reanalysis. Quart J Roy Meteor Soc,146(730):1999-2049 doi: 10.1002/qj.3803
    Hirata F E,Webster P J,Toma V E. 2013. Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys Res Lett,40(12):3337-3341 doi: 10.1002/grl.50632
    Hsu P C,Li T,Lin Y C,et al. 2012. A spatial-temporal projection method for seasonal prediction of spring rainfall in northern Taiwan. J Meteor Soc Japan,90(2):179-190 doi: 10.2151/jmsj.2012-202
    Hsu P C,Li T,You L J,et al. 2015. A spatial-temporal projection model for 10−30 day rainfall forecast in South China. Climate Dyn,44(5-6):1227-1244 doi: 10.1007/s00382-014-2215-4
    Hsu P C,Lee J Y,Ha K J. 2016. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int J Climatol,36(3):1403-1412 doi: 10.1002/joc.4433
    Ji Y Q,Sun X G,Xu Y M,et al. 2021. Summer regional pentad extreme precipitation in eastern China and their possible causes. Front Earth Sci,8:598025 doi: 10.3389/feart.2020.598025
    Jia X L,Chen L J,Ren F M,et al. 2011. Impacts of the MJO on winter rainfall and circulation in China. Adv Atmos Sci,28(3):521-533 doi: 10.1007/s00376-010-9118-z
    Jones C,Carvalho L M V,Wayne Higgins R,et al. 2004. A statistical forecast model of tropical intraseasonal convective anomalies. J Climate,17(11):2078-2095 doi: 10.1175/1520-0442(2004)017<2078:ASFMOT>2.0.CO;2
    Kim H,Vitart F,Waliser D E. 2018. Prediction of the Madden-Julian oscillation:A review. J Climate,31(23):9425-9443 doi: 10.1175/JCLI-D-18-0210.1
    Kim M,Yoo C,Choi J. 2021. Enhancing subseasonal temperature prediction by bridging a statistical model with dynamical Arctic Oscillation forecasting. Geophys Res Lett,48(15):e2021GL093447
    Lau W K M,Waliser D E,Waliser D. 2012. Predictability and ForecastingLau W K M,Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System. Berlin,Heidelberg:Springer,433-476
    Lee C Y,Camargo S J,Vitart F,et al. 2018. Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea Forecasting,33(4):967-988 doi: 10.1175/WAF-D-17-0165.1
    Lee S S,Moon J Y,Wang B,et al. 2017. Subseasonal prediction of extreme precipitation over Asia:Boreal summer intraseasonal oscillation perspective. J Climate,30(8):2849-2865 doi: 10.1175/JCLI-D-16-0206.1
    Li C F,Lu R Y,Dunstone N,et al. 2021. The seasonal prediction of the exceptional Yangtze River rainfall in Summer 2020. Adv Atmos Sci,38(12):2055-2066 doi: 10.1007/s00376-021-1092-0
    Liao Z,Zhai P,Chen Y,et al. 2018. Atmospheric circulation patterns associated with persistent wet-freezing events over southern China. Int J Climatol,38(10):3976-3990 doi: 10.1002/joc.5548
    Liebmann B,Smith C. 1996. Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Amer Meteor Soc,77(6):1275-1277
    Lim Y,Son S W,Marshall A G,et al. 2019. Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn,53(3-4):1681-1695 doi: 10.1007/s00382-019-04719-y
    Lin H,Mo R P,Vitart F,et al. 2019. Eastern Canada flooding 2017 and its subseasonal predictions. Atmos Ocean,57(3):195-207 doi: 10.1080/07055900.2018.1547679
    Liu B Q,Yan Y H,Zhu C W,et al. 2020. Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys Res Lett,47(22):e2020GL090342
    Liu X,Yao J,Wu T,et al. 2021. Development of coupled data assimilation with the BCC Climate System Model:Highlighting the role of sea-ice assimilation for global analysis. J Adv Model Earth Syst,13(4):e2020MS002368
    Mariotti A,Baggett C,Barnes E A,et al. 2020. Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull Amer Meteor Soc,101(5):E608-E625 doi: 10.1175/BAMS-D-18-0326.1
    Marshall A G,Hendon H H. 2019. Multi-week prediction of the Madden-Julian oscillation with ACCESS-S1. Climate Dyn,52(5-6):2513-2528 doi: 10.1007/s00382-018-4272-6
    Pei F S,Wu C J,Liu X P,et al. 2018. Detection and attribution of extreme precipitation changes from 1961 to 2012 in the Yangtze River Delta in China. Catena,169:183-194 doi: 10.1016/j.catena.2018.05.038
    Qi X,Yang J. 2019a. Extended-range prediction of a heat wave event over the Yangtze River Valley:Role of intraseasonal signals. Atmos Oceanic Sci Lett,12(6):451-457 doi: 10.1080/16742834.2019.1669408
    Qi X,Yang J,Gao M N,et al. 2019b. Roles of the tropical/extratropical intraseasonal oscillations on generating the heat wave over Yangtze River valley:A numerical study. J Geophys Res,124(6):3110-3123 doi: 10.1029/2018JD029868
    Qian Y T,Hsu P C,Murakami H,et al. 2020. A hybrid dynamical-statistical model for advancing subseasonal tropical cyclone prediction over the western North Pacific. Geophys Res Lett,47(20):e2020GL090095
    Ren F M,Cui D L,Gong Z Q,et al. 2012. An objective identification technique for regional extreme events. J Climate,25(20):7015-7027 doi: 10.1175/JCLI-D-11-00489.1
    Seo E,Lee M I,Jeong J H,et al. 2019. Impact of soil moisture initialization on boreal summer subseasonal forecasts:Mid-latitude surface air temperature and heat wave events. Climate Dyn,52(3-4):1695-1709 doi: 10.1007/s00382-018-4221-4
    Seo K H,Lee H J,Frierson D M W. 2016. Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J Atmos Sci,73(9):3557-3571 doi: 10.1175/JAS-D-16-0036.1
    Specq D,Batté L. 2020. Improving subseasonal precipitation forecasts through a statistical-dynamical approach:Application to the southwest tropical Pacific. Climate Dyn,55(7-8):1913-1927 doi: 10.1007/s00382-020-05355-7
    Vitart F,Ardilouze C,Bonet A. 2017. The subseasonal to seasonal (S2S) prediction project database. Bull Amer Meteor Soc,98(1):163-173 doi: 10.1175/BAMS-D-16-0017.1
    Wu J,Ren H L,Zhang P Q,et al. 2022. The dynamical-statistical subseasonal prediction of precipitation over China based on the BCC new-generation coupled model. Climate Dyn,59(3-4):1213-1232 doi: 10.1007/s00382-022-06187-3
    Wu J T, Li J, Zhu Z W, et al. 2022. Factors determining the subseasonal prediction skill of summer extreme rainfall over southern China. Climate Dyn, doi: 10.1007/s00382-022-06326-w
    Wu T W,Yu R C,Liu Y X,et al. 2021. BCC-CSM2-HR:A high-resolution version of the Beijing Climate Center Climate System Model. Geosci Model Dev,14(5):2977-3006 doi: 10.5194/gmd-14-2977-2021
    Xie J H,Yu J H,Chen H S,et al. 2020. Sources of subseasonal prediction skill for heatwaves over the Yangtze River Basin revealed from three S2S Models. Adv Atmos Sci,37(12):1435-1450 doi: 10.1007/s00376-020-0144-1
    Yang J,Wang B,Bao Q. 2010. Biweekly and 21−30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin. J Climate,23(5):1146-1159 doi: 10.1175/2009JCLI3005.1
    Yang J,Bao Q,Wang B,et al. 2014. Distinct quasi-biweekly features of the subtropical east Asian monsoon during early and late summers. Climate Dyn,42(5-6):1469-1486 doi: 10.1007/s00382-013-1728-6
    Yang J,Zhu T,Gao M N,et al. 2018. Late-July barrier for subseasonal forecast of summer daily maximum temperature over Yangtze River Basin. Geophys Res Lett,45(12):12610-12615
    Yang Z F,Huang W Y,Wang B,et al. 2018. Possible mechanisms for four regimes associated with cold events over East Asia. Climate Dyn,51(1-2):35-56 doi: 10.1007/s00382-017-3905-5
    Yao S X,Tong Q Y,Li T,et al. 2020. The 10−30-day oscillation of winter rainfall in southern China and its relationship with circulation patterns in different latitudes. Int J Climatol,40(6):3268-3280 doi: 10.1002/joc.6396
    Yao Y H,Lin H,Wu Q G. 2015. Subseasonal variability of precipitation in China during boreal winter. J Climate,28(16):6548-6559 doi: 10.1175/JCLI-D-15-0033.1
    Zhai P,Zhang X,Wan H. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate,18(7):1096-1108 doi: 10.1175/JCLI-3318.1
    Zhang C D. 2013. Madden-Julian oscillation:Bridging weather and climate. Bull Amer Meteor Soc,94(12):1849-1870 doi: 10.1175/BAMS-D-12-00026.1
    Zhang K Y,Li J,Zhu Z W,et al. 2021. Implications from subseasonal prediction skills of the prolonged heavy snow event over southern China in early 2008. Adv Atmos Sci,38(11):1873-1888 doi: 10.1007/s00376-021-0402-x
    Zhang W J,Huang Z C,Jiang F,et al. 2021. Exceptionally persistent Madden-Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys Res Lett,48(5):e2020GL091588
    Zhou Y,Yang B,Chen H S,et al. 2019. Effects of the Madden-Julian Oscillation on 2-m air temperature prediction over China during boreal winter in the S2S database. Climate Dyn,52(11):6671-6689 doi: 10.1007/s00382-018-4538-z
    Zhu Z W,Li T,Hsu P C,et al. 2015. A spatial-temporal projection model for extended-range forecast in the tropics. Climate Dyn,45(3-4):1085-1098 doi: 10.1007/s00382-014-2353-8
    Zhu Z W,Li T,Bai L,et al. 2016. Extended-range forecast for the temporal distribution of clustering tropical cyclogenesis over the western North Pacific. Theor Appl Climatol,130(3-4):865-877
    Zhu Z W,Li T. 2017a. The statistical extended-range (10−30-day) forecast of summer rainfall anomalies over the entire China. Climate Dyn,48(1-2):209-224 doi: 10.1007/s00382-016-3070-2
    Zhu Z W,Li T. 2017b. Empirical prediction of the onset dates of south China sea summer monsoon. Climate Dyn,48(5):1633-1645
    Zhu Z W,Li T. 2017c. Statistical extended-range forecast for the winter surface air temperature and extreme cold days over China. Quart J Roy Meteor Soc,143(704):1528-1538 doi: 10.1002/qj.3023
    Zou X K,Ren F M. 2015. Changes in regional heavy rainfall events in China during 1961-2012. Adv Atmos Sci,32(5):704-714 doi: 10.1007/s00376-014-4127-y
  • 加载中
图(8)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  15
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-07-27
  • 网络出版日期:  2022-07-28

目录

    /

    返回文章
    返回