钟倩媚,马静,王璐. 2023. 2016与2020年江淮流域梅雨期降水准双周振荡特征的对比分析. 气象学报,81(2):235-257. DOI: 10.11676/qxxb2023.20220075
引用本文: 钟倩媚,马静,王璐. 2023. 2016与2020年江淮流域梅雨期降水准双周振荡特征的对比分析. 气象学报,81(2):235-257. DOI: 10.11676/qxxb2023.20220075
Zhong Qianmei, Ma Jing, Wang Lu. 2023. Biweekly oscillation of the Meiyu-season precipitation in 2016 and 2020 over the Yangtze-Huaihe river basin:A comparative analysis. Acta Meteorologica Sinica, 81(2):235-257. DOI: 10.11676/qxxb2023.20220075
Citation: Zhong Qianmei, Ma Jing, Wang Lu. 2023. Biweekly oscillation of the Meiyu-season precipitation in 2016 and 2020 over the Yangtze-Huaihe river basin:A comparative analysis. Acta Meteorologica Sinica, 81(2):235-257. DOI: 10.11676/qxxb2023.20220075

2016与2020年江淮流域梅雨期降水准双周振荡特征的对比分析

Biweekly oscillation of the Meiyu-season precipitation in 2016 and 2020 over the Yangtze-Huaihe river basin:A comparative analysis

  • 摘要: 利用海温和多种大气环流再分析资料以及中国逐日降水站点观测数据,通过滤波、合成等方法对2016和2020年江淮流域梅雨期降水的准双周振荡特征进行了对比分析。结果表明,这两年江淮流域准双周振荡降水均异常偏多,但2016年的降水准双周振荡强度及低频异常降水较2020年更为显著。中国南海和西太平洋对流层低层向西北方向移动的低频反气旋以及中高纬度对流层中高层随西风急流向东南方向传播的低频气旋是引起2016年江淮流域降水准双周振荡的主要原因。2020年江淮流域降水的准双周振荡受到日本南部向西南方向移动的低频气旋、菲律宾海向西北方向移动的低频反气旋以及中高纬度地区随极涡西向旋转而西移的低频气旋的共同影响。中国南海和热带西太平洋以及热带印度洋的持续海温正异常通过海-气相互作用激发并维持了2016年中国南海与西太平洋上空异常对流活动以及大气环流系统的准双周振荡。2020年黑潮及其延伸区和西北太平洋海温正异常通过海-气相互作用激发了该区域异常低频气旋反气旋交替生成和移出,调控西北太平洋副热带高压的进退,进而影响江淮流域降水的准双周振荡。在2016和2020年,对流层低层异常反气旋有利于海温的升高,海温正异常进一步激发大气低层异常气旋性环流,而异常气旋性环流会导致洋面变冷出现海温负异常,海温负异常又会促进异常反气旋环流的发展,通过这种准双周尺度上的海-气相互作用,对流层低层的大气准双周振荡信号可持续地向江淮地区传播,从而影响江淮流域梅雨期降水的准双周振荡。

     

    Abstract: The quasi-biweekly oscillation (QBWO) characteristics of Meiyu precipitation in the Yangtze-Huaihe River Basin (YHRB) in 2016 and 2020 are compared by filtering and composite methods using Sea Surface Temperature (SST), atmospheric circulation reanalysis data and daily precipitation data in China. The results show that precipitation exhibited significant QBWO characteristics in both years. However, the QBWO and the low-frequency precipitation in 2016 are stronger than that in 2020. The low-frequency anticyclone moving northwestward in the lower troposphere over the South China Sea (SCS) and the western Pacific and the low-frequency cyclone migrating southeastward under the influence of the westerly jet in the mid-high latitudes are the main reasons for the QBWO of Meiyu precipitation in the YHRB in 2016. In the Meiyu period of 2020, the QBWO precipitation was mainly influenced by the low-frequency cyclones moving southwestward from southern Japan, the low-frequency anticyclones moving northwestward from the Philippine Sea and the low-frequency cyclones moving westward associated with the polar vortex westward rotating in the mid-high latitudes. The continuous SST warming over the SCS, the tropical Western Pacific and the tropical Indian Ocean triggered and maintained the QBWO of convective activities and atmospheric circulations over the SCS and the Western Pacific in 2016 through air-sea interaction. In 2020, positive SST anomalies in the Northwest Pacific and the Kuroshio and its extension region triggered alternative generation and migration of low-frequency cyclones and anticyclones in the region via air-sea interaction, which regulated the advance and retreat of the Western Pacific Subtropical High and thereby affected the QBWO precipitation in the YHRB. In 2016 and 2020, on the quasi-biweekly scale, the anomalous anticyclone in the lower troposphere was favorable for the SST increase, and positive SST anomalies further triggered an anomalous cyclonic in the lower atmosphere, which led to negative SST anomalies and subsequently promoted the development of anomalous anticyclone. Through the air-sea interaction, the QBWO signals in the lower troposphere continuously propagates to the Jianghuai region, affecting the QBWO of rainfall there during the Meiyu period.

     

/

返回文章
返回