Machine learning-based influencing factors analysis and estimation of winter temperature anomalies in China
-
摘要: 使用1951—2021年160个中国国家级气象观测站冬季平均气温及多项大气环流及海温等指数,用机器学习方法研究影响中国冬季气温异常的大气环流及海温等外强迫因子,并建立估算拟合模型,评价筛选出的影响因子组合对中国冬季气温异常分布的贡献。使用最小绝对收缩和选择算子(Lasso)算法提取与冬季气温异常相关的影响因子。为体现特征因子之间非线性关系,使用泰勒公式对筛选后的特征进行多项式增广。使用最小二乘梯度提升决策树(LS-GBDT)算法对筛选出的特征因子与冬季气温异常之间的非线性关系进行估算拟合。结果表明,机器学习方法能够对影响冬季气温异常的特征因子进行合理筛选与重要性分析,建立的估算模型在一定程度上体现了气候系统特征因子与冬季气温异常变化之间的非线性联系。本研究为了解中国冬季气温异常分布的影响因素及其模拟与估算提供了新方法和途径。Abstract: In the study, the mean winter temperature collected at 160 stations in China from 1951 to 2021 and a number of atmospheric circulation and sea temperature indices are used to investigate the relationship between the distribution of winter temperature anomalies and the atmospheric circulation and external forcing factors. A model of fitting is also established by using machine learning methods. In this way, we can understand to what extent the screened combination of influencing factors can explain the distribution of winter temperature anomalies in China. The Least Absolute Shrinkage and Selection Operator (Lasso) algorithm is used to extract the influencing factors related to winter temperature anomalies. In addition, to reflect the nonlinear relationship between these factors, the original features are augmented to polynomial features using Taylor's formula. To further study the nonlinear relationship between the selected factors, the least squares gradient boosting decision tree (LS-GBDT) algorithm is used to estimate and fit winter temperature. Experiments are conducted on the training samples and test samples respectively and have achieved good results. The result verifies that machine learning can be used to screen and analyze the importance of factors affecting winter temperature anomalies more reasonably, and the estimation model established can to a certain extent reflects the nonlinear relationship between the factors influencing the climate system and winter temperature. This work provides a new way to simulate and estimate distribution of the winter tmperature anomalies in China.
-
Key words:
- Winter temperature /
- Machine learning /
- Lasso /
- LS-GBDT /
- Climate prediction
-
图 2 Lasso拟合系数轨迹 (df代表自由度;绿色虚线:最小拟合均方误差对应的Lambda;蓝色虚线:在不大于最小拟合均方误差的1个标准差内对应的最大Lambda;彩色实线:随Lambda变化而变化的不同特征因子的拟合系数)
Figure 2. Trajectory plot of fitting coefficient on Lasso (df:degrees of freedom;green dotted line:Lambda corresponding to the minimum fitting root mean square error;blue dashed line:the corresponding maximum Lambda no greater than one standard deviation of the minimum fitting root mean square error;solid colored line: different features,the fitting coefficients of which vary with the change of Lambda)
图 4 1956/1957年中国冬季平均气温距平实况 (a)、基于Lasso+LS-GBDT再代入 (b) 和Lasso+LS-GBDT+泰勒多项式特征再代入 (c) 结果 (单位:℃)
Figure 4. Spatial distributions of (a) China's winter mean temperature anomalies,(b) re-substitution based on Lasso+LS-GBDT and (c) re-substitution based on the characteristics of Lasso+LS-GBDT+Taylor polynomials features in 1956/1957 (unit:℃)
图 5 1998/1999年中国冬季平均气温距平实况 (a)、基于Lasso+LS-GBDT的再代入(b)和Lasso+LS-GBDT+泰勒多项式特征的再代入 (c) 结果 (单位:℃)
Figure 5. Spatial distributions of (a) China's winter mean temperature anomalies,(b) re-substitution based on Lasso+LS-GBDT and (c) re-substitution based on the characteristics of Lasso+LS-GBDT+Taylor polynomials features in 1998/1999 (unit:℃)
图 6 2012/2013年中国冬季平均气温距平实况 (a)、基于Lasso+LS-GBDT的拟合 (b) 和Lasso+LS-GBDT +泰勒多项式特征的拟合 (c) 结果 (单位:℃)
Figure 6. Spatial distributions of (a) China's winter mean temperature anomalies,(b) forecast based on Lasso+LS-GBDT and (c) forecast based on the characteristics of Lasso+LS-GBDT+Taylor polynomials features in 2012/2013 (unit:℃)
图 7 2017/2018年中国冬季平均气温距平实况 (a)、基于Lasso+LS-GBDT的拟合 (b) 和Lasso+LS-GBDT +泰勒多项式特征的拟合 (c) 结果 (单位:℃)
Figure 7. The map of (a) China's winter mean temperature anomalies,(b) the forecast map based on Lasso + LS-GBDT tree and (c)the forecast map based on the characteristics of Lasso + LS-GBDT tree + Taylor polynomials features in 2017/2018 (unit:℃)
表 1 特征因子分类
Table 1. Classification of features
类别 筛选气候系统指标集合 极涡 (1)北半球极涡中心纬向位置指数
(2)亚洲区极涡强度指数;亚洲区极涡面积指数;大西洋欧洲区极涡强度指数;大西洋欧洲区极涡面积指数;太平洋区极涡强度指数;太平洋区极涡面积指数;北半球极涡强度指数;北半球极涡面积指数;北美区极涡面积指数副热带高压 南海副高脊线位置指数(10°—60°N﹑100°—120°E);北非副高脊线位置指数(10°—60°N﹑20°W—60°E) 大尺度环流 (1)亚洲纬向环流指数;亚洲经向环流指数
(2)南极涛动;北大西洋涛动
(3)东大西洋-西俄罗斯遥相关型;斯堪的纳维亚遥相关型;西大西洋遥相关型;极地-欧亚遥相关型;北太平洋遥相关型海温 NINO W区海表温度距平指数;热带南大西洋海温指数;西太平洋暖池面积指数;大西洋多年代际振荡指数 高空槽 西藏高原-2指数;印缅槽强度指数 纬向风场 850 hPa东太平洋信风指数 表 2 距平符号一致率和空间距平相关系数 (相关系数通过样本量为160的
$ \alpha $ =0.001显著性检验)Table 2. Anomaly sign rate and spatial anomaly correlation coefficient (correlation coefficients are tested by the significance level of
$ \alpha $ =0.001 with a sample size of 160)试验名称 平均距平符号一致率 平均空间距平相关系数 统计机器学习 统计机器学习+泰勒 统计机器学习 统计机器学习+泰勒 训练样本 86.0% 86.8% 0.72 0.74 独立样本 73.1% 73.8% 0.30 0.39 -
丁一汇. 2011. 季节气候预测的进展和前景. 气象科技进展,1(3):14-27Ding Y H. 2011. Progress and prospects of seasonal climate prediction. Adv Meteor Sci Technol,1(3):14-27 (in Chinese) 范可, 王会军. 2006. 南极涛动的年际变化及其对东亚冬春季气候的影响. 中国科学D辑: 地球科学, 36(4): 385-391. Fan K, Wang H J. 2006. Interannual variability of Antarctic Oscillation and its influence on East Asian climate during boreal winter and spring. Sci China Ser D, 49(5): 554-560 高伟,李乡儒. 2016. 多任务Sparse Group Lasso特征提取与支持向量机回归在恒星大气物理参量估计中的应用. 天文学报,57(4):389-401Gao W,Li X R. 2016. Application of multi-task sparse group lasso feature extraction and support vector machine regression in the stellar atmospheric parametrization. Acta Astron Sinica,57(4):389-401 (in Chinese) 韩雪,陈幸荣,李荣滨. 2015. 我国冬季气温的趋势变化特征及其影响因子分析. 海洋预报,32(6):49-57Han X,Chen X R,Li R B. 2015. Variation trend characteristics and influencing factors of winter temperature in China. Mar Forecasts,32(6):49-57 (in Chinese) 蒋薇,刘芸芸,陈鹏等. 2021. 利用深度神经网络和先兆信号的江苏夏季降水客观预测方法. 气象学报,79(6):1035-1048Jiang W,Liu Y Y,Chen P,et al. 2021. Prediction of summer precipitation in Jiangsu province based on precursory factors:A deep neural network approach. Acta Meteor Sinica,79(6):1035-1048 (in Chinese) 康彩燕,胡钰玲,王式功等. 2017. 极涡对北半球冬季气温的影响. 兰州大学学报(自然科学版),53(2):227-234Kang C Y,Hu Y L,Wang S G,et al. 2017. The effect of polar vortex on winter temperature in the Northern Hemisphere. J Lanzhou Univ (Nat Sci),53(2):227-234 (in Chinese) 康丽华,陈文,王林等. 2009. 我国冬季气温的年际变化及其与大气环流和海温异常的关系. 气候与环境研究,14(1):45-53Kang L H,Chen W,Wang L,et al. 2009. Interannual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature. Climatic Environ Res,14(1):45-53 (in Chinese) 李崇银. 2018. 气候动力学引论. 3版. 北京: 气象出版社, 527pp. Li C Y. 2018. Introduction to Climatic Dynamics. 3rd ed. Beijing: China Meteorological Press, 527pp (in Chinese) 李双林,王彦明,郜永祺. 2009. 北大西洋年代际振荡(AMO)气候影响的研究评述. 大气科学学报,32(3):458-465Li S L,Wang Y M,Gao Y Q. 2009. A review of the researches on the Atlantic multidecadal oscillation (AMO) and its climate influence. Trans Atmos Sci,32(3):458-465 (in Chinese) 李维京,李怡,陈丽娟等. 2013. 我国冬季气温与影响因子关系的年代际变化. 应用气象学报,24(4):385-396Li W J,Li Y,Chen L J,et al. 2013. Inter-decadal variability of the relationship between winter temperature in China and its impact factors. J Appl Meteor Sci,24(4):385-396 (in Chinese) 李怡. 2013. 中国冬季气温与影响因子关系的年代际变化特征和预测方法[D]. 北京: 中国气象科学研究院. Li Y. 2013. Interdecadal variability of relationship between winter temperature in China and its impact factors in research and prediction methods[D]. Beijing: Chinese Academy of Meteorological Sciences (in Chinese) 李勇,陆日宇,何金海. 2007. 影响我国冬季温度的若干气候因子. 大气科学,31(3):505-514Li Y,Lu R Y,He J H. 2007. Several climate factors influencing the winter temperature over China. Chinese J Atmos Sci,31(3):505-514 (in Chinese) 刘伯奇,祝从文. 2020. 中国夏季降水预测因子潜在技巧分布图及应用. 应用气象学报,31(5):570-582Liu B Q,Zhu C W. 2020. Potential skill map of predictors applied to the seasonal forecast of summer rainfall in China. J Appl Meteor Sci,31(5):570-582 (in Chinese) 刘毓赟,陈文. 2012. 北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响. 大气科学,36(2):423-432Liu Y Y,Chen W. 2012. Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China. Chinese J Atmos Sci,36(2):423-432 (in Chinese) 王会军, 范可, 郎咸梅等. 2012. 我国短期气候预测的新理论﹑新方法和新技术. 北京: 气象出版社, 226pp. Wang H J, Fan K, Lang X M, et al. 2012. Advances in Climate Prediction Theory and Technique of China. Beijing: China Meteorological Press, 226pp (in Chinese) 王金甲,孙梦然,郝智. 2017. 稀疏组lasso罚向量自回归模型的大气污染物预测:京津冀案例研究. 高技术通讯,27(6):567-576Wang J J,Sun M R,Hao Z. 2017. Sparse group lasso VARX for prediction of atmospheric pollutants:A case study of Beijing-Tianjin-Hebei. Chinese High Technol Lett,27(6):567-576 (in Chinese) 王昱,杨修群,孙旭光等. 2021. 一种基于全球动力模式和SMART原理结合的统计降尺度区域季节气候预测方法. 气象科学,41(5):569-583Wang Y,Yang X Q,Sun X G,et al. 2021. A statistical downscaling method for regional seasonal climate prediction with combined global dynamical model and SMART principle. J Meteor Sci,41(5):569-583 (in Chinese) 魏凤英. 2008. 气候变暖背景下我国寒潮灾害的变化特征. 自然科学进展,18(3):289-295Wei F Y. 2008. Variation characteristics of cold wave disasters in China under the background of climate warming. Prog Nat Sci,18(3):289-295 (in Chinese) 魏凤英. 2011. 我国短期气候预测的物理基础及其预测思路. 应用气象学报,22(1):1-11Wei F Y. 2011. Physical Basis of Short-term Climate Prediction in China and Short-term Cliamte Objective Prediction Methods. J Appl Meteor Sci,22(1):1-11 (in Chinese) 魏凤英,韩雪,王永光等. 2015. 中国短期气候预测的物理基础及其方法研究. 北京:气象出版社,270ppWei F Y,Han X,Wang Y G,et al. 2015. Physical Basis of Short-Term Climate Prediction in China and Short-term Climate Prediction Methods. Beijing:China Meteorological Press,270pp (in Chinese) 武炳义,黄荣辉. 1999. 冬季北大西洋涛动极端异常变化与东亚冬季风. 大气科学,23(6):641-651Wu B Y,Huang R H. 1999. Effects of the extremes in the North Atlantic oscillation on East Asia winter monsoon. Chinese J Atmos Sci,23(6):641-651 (in Chinese) 武炳义,卞林根,张人禾. 2004. 冬季北极涛动和北极海冰变化对东亚气候变化的影响. 极地研究,16(3):211-220Wu B Y,Bian L G,Zhang R H. 2004. Effects of the winter AO and the Arctic sea ice variations on climate variation over East Asia. Chinese J Polar Res,16(3):211-220 (in Chinese) 武炳义, 苏京志, 张人禾. 2011. 秋-冬季节北极海冰对冬季西伯利亚高压的影响. 科学通报, 56(27): 2335-2343. Wu B Y, Su J Z, Zhang R H. 2011. Effects of autumn-winter Arctic Sea Ice on winter Siberian High. Chinese Sci Bull, 56(30): 3220-3228 徐邦琪,臧钰歆,朱志伟等. 2020. 时空投影模型(STPM)的次季节至季节(S2S)预测应用进展. 大气科学学报,43(1):212-224Hsu P C,Zang Y X,Zhu Z W,et al. 2020. Subseasonal-to-seasonal (S2S) prediction using the spatial-temporal projection model (STPM). Trans Atmo Sci,43(1):212-224 (in Chinese) 杨柳妮. 2013. 东亚冬季气温与中高纬大气环流和外强迫异常的联系[D]. 北京: 中国气象科学研究院. Yang L N. 2013. East Asian winter air temperature and its association with the mid-high latitude atmosphere circulation anomalies and the external forcing[D]. Beijing: Chinese Academy of Meteorological Sciences (in Chinese) 朱艳峰,谭桂容,王永光. 2007. 中国冬季气温变化的空间模态及其与大尺度环流异常的联系. 气候变化研究进展,3(5):266-270Zhu Y F,Tan G R,Wang Y G. 2007. Variation of spatial mode for winter temperature in China and its relationship with the large scale atmospheric circulation. Adv Climate Change Res,3(5):266-270 (in Chinese) Bayasgalan G,Ahn J B. 2018. Seasonal prediction of high-resolution temperature at 2-m height over Mongolia during boreal winter using both coupled general circulation model and artificial neural network. Int J Climatol,38(14):5418-5429 doi: 10.1002/joc.5848 Dai H X,Fan K. 2020. Skilful two-month-leading hybrid climate prediction for winter temperature over China. Int J Climatol,40(11):4922-4943 doi: 10.1002/joc.6497 Ding Y H. 1990. Build-up,air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor Atmos Phys,44(1-4):281-292 doi: 10.1007/BF01026822 Friedman J H. 2001. Greedy function approximation:A gradient boosting machine. Ann Statist,29(5):1189-1232 doi: 10.1214/aos/1013203450 Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. Cambridge: The MIT Press Ham Y G,Kim J H,Luo J J. 2019. Deep learning for multi-year ENSO forecasts. Nature,573(7775):568-572 doi: 10.1038/s41586-019-1559-7 Hastie T, Tibshirani R, Friedman J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer Lee J Y,Lee S S,Wang B,et al. 2013. Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dyn,41(3-4):573-587 doi: 10.1007/s00382-012-1588-5 Liu Y,Fan K,Chen L J,et al. 2021. An operational statistical downscaling prediction model of the winter monthly temperature over China based on a multi-model ensemble. Atmos Res,249:105262 doi: 10.1016/j.atmosres.2020.105262 North G R,Bell T,Cahalan R et al. 1982. Sampling errors in the estimation of empirical orthogonal function. Monthly Weather Reviews,110:699-706 doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 Pan,B X,Anderson G J,Gonçalves A,et al. 2021. Learning to correct climate projection biases. J Adv Model Earth Syst,12(10):e2021MS002509 Ravuri S,Lenc K,Willson M,et al. 2021. Skilful precipitation nowcasting using deep generative models of radar. Nature,597(7878):672-677 doi: 10.1038/s41586-021-03854-z Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B,58(1):267-288 Tong X,Yan Z W,Xia J J,et al. 2019. Decisive atmospheric circulation indices for July–August precipitation in North China based on tree models. J Hydrometeorol,20(8):1707-1720 doi: 10.1175/JHM-D-19-0045.1 Zhang H,Wang Y Q,Chen D D,et al. 2022. Temperature forecasting correction based on operational GRAPES-3km model using machine learning methods. Atmosphere,13(2):362 doi: 10.3390/atmos13020362 Zhou C S,Li H C,Yu C,et al. 2022. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction. Appl Math Mech,43(2):155-166 doi: 10.1007/s10483-022-2822-9 Zhu Z W,Li T. 2017. Statistical extended-range forecast of winter surface air temperature and extremely cold days over China. Quart J Roy Meteor Soc,143(704):1528-1538 doi: 10.1002/qj.3023 -