留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东西伯利亚—波弗特海海冰多年代际变率及其与大西洋多年代际振荡的联系

刘莉 张文君 刘超

刘莉,张文君,刘超. 2023. 东西伯利亚—波弗特海海冰多年代际变率及其与大西洋多年代际振荡的联系. 气象学报,81(1):1-15 doi: 10.11676/qxxb2023.20220080
引用本文: 刘莉,张文君,刘超. 2023. 东西伯利亚—波弗特海海冰多年代际变率及其与大西洋多年代际振荡的联系. 气象学报,81(1):1-15 doi: 10.11676/qxxb2023.20220080
Liu Li, Zhang Wenjun, Liu Chao. 2023. Multidecadal variability of sea ice in the East Siberia-Beaufort Sea region and its linkage with the Atlantic Multidecadal Oscillation. Acta Meteorologica Sinica, 81(1):1-15 doi: 10.11676/qxxb2023.20220080
Citation: Liu Li, Zhang Wenjun, Liu Chao. 2023. Multidecadal variability of sea ice in the East Siberia-Beaufort Sea region and its linkage with the Atlantic Multidecadal Oscillation. Acta Meteorologica Sinica, 81(1):1-15 doi: 10.11676/qxxb2023.20220080

东西伯利亚—波弗特海海冰多年代际变率及其与大西洋多年代际振荡的联系

doi: 10.11676/qxxb2023.20220080
基金项目: 国家自然科学基金项目(42088101、42125501)
详细信息
    作者简介:

    刘莉,从事海冰气相互作用研究。E-mail:20201201050@nuist.edu.cn

    通讯作者:

    张文君,从事 ENSO 机理及海气相互作用等方面研究。E-mail : zhangwj@nuist.edu.cn

  • 中图分类号: P46

Multidecadal variability of sea ice in the East Siberia-Beaufort Sea region and its linkage with the Atlantic Multidecadal Oscillation

  • 摘要: 基于哈德来中心(Hadley Centre)逐月的海表温度、海冰密集度资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)的大气环流再分析资料,分析了1950—2020年秋季(8—10月)东西伯利亚—波弗特海(East Siberian-Beaufort,EsCB)海冰年代际变化的时空特征,并阐述了大西洋多年代际振荡(Atlantic Multidecadal Oscillation,AMO)对EsCB海冰年代际变率的可能调制作用。结果表明,EsCB是秋季北极海冰年代际变化最主要的区域,该地海冰密集度年代际变率可占其异常总方差的40%以上。进一步研究发现,AMO对秋季EsCB海冰存在明显的调制作用,在AMO正位相,北大西洋暖海温异常激发向极传播的大气罗斯贝波列,有利于北极中部出现高压异常,相应的大气绝热下沉运动使得对流层低层出现明显的增温,从而有利于EsCB海冰的融化。与此同时,地表增温和EsCB海冰消融会引起局地云量的增多、大气向下长波辐射的增加,这反过来又使得地表气温升高,这种地表气温-云-长波辐射的正反馈过程有利于年代际海冰信号的长时间维持。耦合模式的北大西洋“起搏器”试验可以很好地再现观测中AMO调制EsCB秋季海冰的物理过程,进一步佐证了本文的结论。

     

  • 图 1  北极地区各海域地理分布 (红框表示EsCB区域:70°—80°N,145°E—125°W)

    Figure 1.  Geographical distribution of the Arctic seas (the red sector indicates the EsCB region:70—80°N,145°E—125°W)

    图 2  秋季海冰密集度的 (a) 气候态 (色阶) 和 (b) 年代际变率的标准差 (色阶) 及年代际方差占总方差比例 (等值线,单位:%) 的空间分布 (黑框表示EsCB区域)

    Figure 2.  Spatial distributions of autumn SIC (a) climatological mean (shadings),(b) standard deviation of the decadal component (shadings),and fraction of variance explained by the decadal component with respect to the total variance (contours,unit:%) (black box indicates the EsCB region)

    图 3  (a) 标准化EsCB指数 (柱状)、10年低通滤波的EsCB指数 (黑线)、AMO指数 (灰线) 和IPO指数 (绿线) 的时间序列,(b) EsCB指数与同期全球海表温度异常相关系数的空间分布 (黑框和红框分别表示IPO以及AMO指数定义的区域,打点表示通过90%的显著性检验)

    Figure 3.  (a) Time series of normalized EsCB index (bar) and 10-year low-pass filtered EsCB index (black line),AMO index (gray line),and IPO index (green line);(b) spatial distribution of correlation coefficient between the global SST anomalies and the EsCB index (black and red boxes represent the regions for the calculation of the IPO and AMO indices,respectively, values exceeding the 90% confidence level are stippled)

    图 4  (a)标准化AMO指数回归的海冰密集度异常,(b) AMO正位相和 (c) AMO负位相合成的海冰密集度异常 (色阶,单位:%)(打点表示通过90%的显著性检验,黑框表示EsCB区域)

    Figure 4.  (a) SIC anomaly regressed onto normalized AMO index,composite SIC anomaly (shadings,unit:%) for (b) the positive (AMO+) and (c) negative (AMO−) AMO phases (values exceeding the 90% confidence level are stippled, black box indicates the EsCB region)

    图 5  标准化AMO指数回归的 (a) 500 hPa位势高度场 (色阶,单位:m) 和波作用通量 (箭头,单位:m2/s2),(b)850 hPa位势高度场 (色阶,单位:m)(打点表示通过90%的显著性检验,黑框表示EsCB区域)

    Figure 5.  (a) 500 hPa geopotential height (shadings,unit:m),wave activity flux (vectors,unit:m2/s2),and (b) 850 hPa geopotential height anomaly (shadings,unit:m) regressed onto normalized AMO index (values exceeding the 90% confidence level are stippled, black box indicates the EsCB region)

    图 6  标准化AMO指数回归的 (a) 经向平均 (70°—80°N) 气温场(色阶,单位:℃) 和垂直速度 (等值线:实线为正,虚线为负,间隔2×10−3 Pa/s)(打点表示气温场通过90%的显著性检验,垂直速度仅展示通过90%显著性检验的部分,黑虚线之间的区域表示EsCB地区);(b) 与(a) 类似,但是为地表气温 (色阶,单位:℃) 和850 hPa风场 (箭头,单位:m/s)(风场和填色仅展示通过90%显著性检验的部分,黑框表示EsCB区域)

    Figure 6.  (a) Meridionally averaged (70°—80°N) air temperature (shadings,unit:℃) and vertical velocity anomalies (contours:solid lines are positive,dashed lines are negative,interval:2×10−3 Pa/s) regressed onto normalized AMO index (Only values exceeding the 90% confidence level are stippled (shadings) or shown (contours), the black dashed lines represent the zonal range of the EsCB region); (b) similar to (a),but for surface air temperature (shadings,unit:℃) and 850 hPa wind (vectors,unit:m/s) anomalies (only values exceeding the 90% confidence level are shown,black box indicates the EsCB region)

    图 7  标准化AMO指数回归的 (a) 总云量 (色阶,单位:%),(b) 向下长波辐射通量 (色阶,单位:W/m2)(打点表示通过90%的显著性检验,黑框表示EsCB区域)

    Figure 7.  (a) Total cloud cover (shadings,unit: %) and (b) downward longwave radiation anomalies (shadings,unit:W/m2) regressed onto the normalized AMO index (values exceeding the 90% confidence level are stippled, black box indicates the EsCB region)

    图 8  (a) 海表温度异常 (色阶,单位:℃)、(b) 海冰密集度异常 (色阶,单位:%) 和 (c) 地表温度异常 (色阶,单位:℃) 在dcppC-amv-pos试验和dcppC-amv-neg试验中响应差异的集合平均值 (打点表示通过90%的显著性检验,黑框表示EsCB区域)

    Figure 8.  Simulated ensemble mean differences in (a) SST (shadings,unit:℃),(b) SIC (shadings,unit:%) and (c) surface temperature anomalies (shadings,unit:℃) in the dcppC-amv-pos and dcppC-amv-neg experiments (values exceeding the 90% confidence level are stippled,black box indicates the EsCB region)

    图 9  500 hPa (a)、850 hPa (b) 位势高度场 (色阶,单位:m) 在dcppC-amv-pos试验和dcppC-amv-neg试验中响应差异的集合平均值 (打点表示通过90%的显著性检验,黑框表示EsCB区域)

    Figure 9.  Simulated ensemble mean differences in (a) 500 hPa and (b) 850 hPa geopotential height anomalies (shadings,unit:m) in the dcppC-amv-pos and dcppC-amv-neg experiments (values exceeding the 90% confidence level are stippled,black box indicates the EsCB region)

    图 10  (a) 海表温度异常 (色阶,单位:℃)、(b) 海冰密集度异常 (色阶,单位:%) 和 (c) 地表温度异常 (色阶,单位:℃) dcppC-ipv-pos试验和dcppC-ipv-pos试验中响应差异的集合平均值 (打点表示通过90%的显著性检验,黑框表示EsCB区域)

    Figure 10.  Simulated ensemble mean differences in (a) SST (shadings,unit:℃),(b) SIC (shadings,unit:%) and (c) surface temperature anomalies (shadings,unit:℃) in the dcppC-ipv-neg and dcppC-ipv-pos experiments (values exceeding the 90% confidence level are stippled,black box indicates the EsCB region)

    图 11  AMO影响EsCB海冰物理过程的概念示意 (带+(−) 的橙黄色 (天蓝色) 圆圈代表500 hPa的正 (负) 位势高度异常,是罗斯贝波列中心;黑色箭头表示罗斯贝波传播方向,红色扇形表示EsCB区域,色阶表示北大西洋暖海温异常,AMO+,黄色箭头表示绝热下沉运动,云和蓝色箭头表示地表气温-云-长波反馈,地面紫色箭头表示反气旋式风)

    Figure 11.  Schematic diagram of the mechanism of AMO influence on EsCB sea ice (The orange (sky blue) circles with + (−) represent positive (negative) geopotential height anomalies at 500 hPa,The black arrow indicates the direction of Rossby wave propagation; The red sector indicates the EsCB region; Shading shows North Atlantic warm SST anomalies associated with the positive AMO phase (AMO+); The yellow arrow indicates the adiabatic descent; The cloud and blue arrows indicate the surface air temperature-cloud-long wave feedback. Purple arrows on the ground indicate anticyclonic winds)

    表  1  DCPP 试验列表

    Table  1.   List of the DCPP experiments

    描述
    dcppC-amv-negAMO−异常试验
    dcppC-amv-posAMO+异常试验
    dcppC-ipv-negIPO-异常试验
    dcppC-ipv-posIPO+异常试验
    下载: 导出CSV
  • 柯长青,彭海涛,孙波等. 2013. 2002年—2011年北极海冰时空变化分析. 遥感学报,17(2):459-466,452-458

    Ke C Q,Peng H T,Sun B,et al. 2013. Spatio-temporal variability of Arctic sea ice from 2002 to 2011. J Remote Sens,17(2):459-466,452-458 (in Chinese)
    劳汉琼,朱伟军,张唯. 2006. 冬季格陵兰以东区域海冰异常对北大西洋风暴轴的影响研究. 气象与减灾研究,29(4):6-11 doi: 10.3969/j.issn.1007-9033.2006.04.002

    Lao H Q,Zhu W J,Zhang W. 2006. Relationships of winter East Greenland sea ice anomaly and winter Atlantic storm-tracks. Meteor Disaster Reduction Res,29(4):6-11 (in Chinese) doi: 10.3969/j.issn.1007-9033.2006.04.002
    李培基. 1996. 北极海冰与全球气候变化. 冰川冻土,18(1):72-80

    Li P J. 1996. The Arctic Sea Ice and climate change. J Glaciol Geocryol,18(1):72-80 (in Chinese)
    李双林,王彦明,郜永祺. 2009. 北大西洋年代际振荡(AMO)气候影响的研究评述. 大气科学学报,32(3):458-465 doi: 10.3969/j.issn.1674-7097.2009.03.014

    Li S L,Wang Y M,Gao Y Q. 2009. A review of the researches on the Atlantic multidecadal oscillation(AMO) and its climate influence. Trans Atmos Sci,32(3):458-465 (in Chinese) doi: 10.3969/j.issn.1674-7097.2009.03.014
    马靖凯,陶树豪,杜凌等. 2019. 北极太平洋扇区海冰融冻期的年代际变化. 气候变化研究快报,8(3):302-311 doi: 10.12677/CCRL.2019.83034

    Ma J K,Tao S H,Du L,et al. 2019. Decadal variation of sea ice melting-frozen season in the Pacific sector of the Arctic. Clim Change Res Lett,8(3):302-311 (in Chinese) doi: 10.12677/CCRL.2019.83034
    祁莉,徐业佳. 2018. 北极海冰及其与气象要素年际关系的年代际变化. 大气科学学报,41(3):355-366 doi: 10.13878/j.cnki.dqkxxb.20160811002

    Qi L,Xu Y J. 2018. Interdecadal variations of Arctic sea ice and its interannual relationship with meteorological elements. Trans Atmos Sci,41(3):355-366 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160811002
    隋翠娟,张占海,吴辉碇等. 2015. 1979—2012年北极海冰范围年际和年代际变化分析. 极地研究,27(2):174-182

    Sui C J,Zhang Z H,Wu H D,et al. 2015. Interannual and interdecadal variability of Arctic sea ice extent from 1979-2012. Chinese J Polar Res,27(2):174-182 (in Chinese)
    汪代维,杨修群. 2002. 北极海冰变化的时间和空间型. 气象学报,60(2):129-138 doi: 10.3321/j.issn:0577-6619.2002.02.001

    Wang D W,Yang X Q. 2002. Temporal and spatial patterns of Arctic sea ice variations. Acta Meteor Sinica,60(2):129-138 (in Chinese) doi: 10.3321/j.issn:0577-6619.2002.02.001
    武炳义,杨琨. 2016. 从2011/2012和2015/2016年冬季大气环流异常看北极海冰以及前期夏季北极大气环流异常的作用. 气象学报,74(5):683-696 doi: 10.11676/qxxb2016.068

    Wu B Y,Yang K. 2016. Roles of Arctic sea ice and the preceding summer Arctic atmospheric circulation anomalies in the atmospheric circulations anomalies of 2011/2012 and 2015/2016 winters. Acta Meteor Sinica,74(5):683-696 (in Chinese) doi: 10.11676/qxxb2016.068
    张璐,张占海,李群等. 2009. 近30年北极海冰异常变化趋势. 极地研究,21(4):344-352

    Zhang L,Zhang Z H,Li Q,et al. 2009. Status of the recent declining of Arctic sea ice studies. Chinese J Polar Res,21(4):344-352 (in Chinese)
    朱大勇,赵进平,史久新. 2007. 北极楚科奇海海冰面积多年变化的研究. 海洋学报,29(2):25-33

    Zhu D Y,Zhao J P,Shi J X. 2007. Study on the multi-year variations of sea ice cover of Chukchi Sea in Arctic Ocean. Acta Oceanol Sinica,29(2):25-33 (in Chinese)
    Aagaard K,Carmack E C. 1989. The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res,94(C10):14485-14498 doi: 10.1029/JC094iC10p14485
    Andrews M B,Ridley J K,Wood R A,et al. 2020. Historical simulations with HadGEM3-GC3.1 for CMIP6. J Adv Model Earth Syst,12(6):e2019MS001995
    Babb D G,Galley R J,Howell S E L,et al. 2022. Increasing multiyear sea ice loss in the Beaufort sea:A new export pathway for the diminishing multiyear ice cover of the Arctic Ocean. Geophys Res Lett,49(9):e2021GL097595
    Barry R G,Serreze M C,Maslanik J A,et al. 1993. The Arctic sea ice-climate system:Observations and modeling. Rev Geophys,31(4):397-422 doi: 10.1029/93RG01998
    Baxter I,Ding Q H,Schweiger A,et al. 2019. How tropical pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J Climate,32(24):8583-8602 doi: 10.1175/JCLI-D-18-0783.1
    Boer G J,Smith D M,Cassou C,et al. 2016. The decadal climate prediction project (DCPP) contribution to CMIP6. Geosci Model Dev,9(10):3751-3777 doi: 10.5194/gmd-9-3751-2016
    Budikova D. 2009. Role of Arctic sea ice in global atmospheric circulation:A review. Global Planet Change,68(3):149-163 doi: 10.1016/j.gloplacha.2009.04.001
    Cai Q Q,Beletsky D,Wang J,et al. 2021. Interannual and decadal variability of Arctic summer sea ice associated with atmospheric teleconnection patterns during 1850-2017. J Climate,34(24):9931-9955
    Castruccio F S,Ruprich-Robert Y,Yeager S G,et al. 2019. Modulation of Arctic sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J Climate,32(5):1419-1441 doi: 10.1175/JCLI-D-18-0307.1
    Cavalieri D J,Parkinson C L. 2012. Arctic sea ice variability and trends,1979–2010. Cryosphere,6(4):881-889 doi: 10.5194/tc-6-881-2012
    Chen S F,Wu R G. 2018. Impacts of early autumn Arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations. Climate Dyn,51(7-8):2523-2542 doi: 10.1007/s00382-017-4026-x
    Chylek P,Folland C K,Lesins G,et al. 2009. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys Res Lett,36(14):L14801 doi: 10.1029/2009GL038777
    Close S,Houssais M N,Herbaut C. 2015. Regional dependence in the timing of onset of rapid decline in Arctic sea ice concentration. J Geophys Res,120(12):8077-8098 doi: 10.1002/2015JC011187
    Comiso J C. 2002. A rapidly declining perennial sea ice cover in the Arctic. Geophys Res Lett,29(20):1956
    Comiso J C,Parkinson C L,Gersten R,et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophys Res Lett,35(1):L01703
    Curry J A,Schramm J L,Ebert E E. 1995. Sea ice-albedo climate feedback mechanism. J Climate,8(2):240-247 doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    Davis R E. 1976. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J Phys Oceanogr,6(3):249-266 doi: 10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
    Day J J,Hargreaves J C,Annan J D,et al. 2012. Sources of multi-decadal variability in Arctic sea ice extent. Environ Res Lett,7(3):034011 doi: 10.1088/1748-9326/7/3/034011
    Delworth T L,Mann M E. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn,16(9):661-676 doi: 10.1007/s003820000075
    Ding Q H,Schweiger A,L’Heureux M,et al. 2017. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change,7(4):289-295 doi: 10.1038/nclimate3241
    Ding S Y,Wu B Y,Chen W. 2021. Dominant characteristics of early autumn Arctic Sea ice variability and its impact on winter eurasian climate. J Climate,34(5):1825-1846 doi: 10.1175/JCLI-D-19-0834.1
    Dittus A J,Hawkins E,Robson J I,et al. 2021. Drivers of recent North Pacific decadal variability:The role of aerosol forcing. Earth's Future,9(12):e2021EF002249
    Eicken H. 2013. Arctic sea ice needs better forecasts. Nature,497(7450):431-433 doi: 10.1038/497431a
    Enfield D B,Mestas-Nuñez A M,Trimble P J. 2001. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U. S. Geophys Res Lett,28(10):2077-2080 doi: 10.1029/2000GL012745
    Frey K E,Moore G W K,Cooper L W,et al. 2015. Divergent patterns of recent sea ice cover across the Bering,Chukchi,and Beaufort seas of the Pacific Arctic Region. Prog Oceanogr,136:32-49 doi: 10.1016/j.pocean.2015.05.009
    Gao Y Q,Sun J Q,Li F,et al. 2015. Arctic sea ice and Eurasian climate:A review. Adv Atmos Sci,32(1):92-114 doi: 10.1007/s00376-014-0009-6
    Hahn L,Ummenhofer C C,Kwon Y O. 2018. North Atlantic natural variability modulates emergence of widespread greenland melt in a warming climate. Geophys Res Lett,45(17):9171-9178 doi: 10.1029/2018GL079682
    Henley B J,Gergis J,Karoly D J,et al. 2015. A tripole index for the interdecadal Pacific Oscillation. Climate Dyn,45(11-12):3077-3090 doi: 10.1007/s00382-015-2525-1
    Honda M,Inoue J,Yamane S. 2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett,36(8):L08707
    Kalnay E,Kanamitsu M,Kistler R,et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc,77(3):437-472 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kay J E,L'Ecuyer T,Gettelman A,et al. 2008. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys Res Lett,35(8):L08503
    Kerr R A. 2000. A North Atlantic climate pacemaker for the centuries. Science,288(5473):1984-1985 doi: 10.1126/science.288.5473.1984
    Kinnard C,Zdanowicz C M,Fisher D A,et al. 2011. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature,479(7374):509-512 doi: 10.1038/nature10581
    Kug J S,Jeong J H,Jang Y S,et al. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat Geosci,8(10):759-762 doi: 10.1038/ngeo2517
    Kwok R,Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records:1958-2008. Geophys Res Lett,36(15):L15501
    Lai W K M,Robson J I,Wilcox L J,et al. 2022. Mechanisms of internal Atlantic multidecadal variability in HadGEM3-GC3.1 at two different resolutions. J Climate,35(4):1365-1383 doi: 10.1175/JCLI-D-21-0281.1
    Lamoureux S F,Stewart K A,Forbes A C,et al. 2006. Multidecadal variations and decline in spring discharge in the Canadian middle Arctic since 1550 AD. Geophys Res Lett,33(2):L02403
    Lee S,Gong T T,Johnson N,et al. 2011. On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J Climate,24(16):4350-4367 doi: 10.1175/2011JCLI4003.1
    Lee S. 2012. Testing of the tropically excited Arctic warming mechanism (TEAM) with traditional El Niño and La Niña. J Climate,25(12):4015-4022 doi: 10.1175/JCLI-D-12-00055.1
    Lei R B,Tian-Kunze X,Leppäranta M,et al. 2016. Changes in summer sea ice,albedo,and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009. J Geophys Res,121(8):5470-5486 doi: 10.1002/2016JC011831
    Levitus S,Matishov G,Seidov D,et al. 2009. Barents Sea multidecadal variability. Geophys Res Lett,36(19):L19604 doi: 10.1029/2009GL039847
    Li F,Orsolini Y J,Wang H J,et al. 2018. Atlantic multidecadal oscillation modulates the impacts of Arctic Sea ice decline. Geophys Res Lett,45(5):2497-2506 doi: 10.1002/2017GL076210
    Li Z Y,Zhang W J,Stuecker M F,et al. 2019. Different effects of two ENSO types on Arctic surface temperature in boreal winter. J Climate,32(16):4943-4961 doi: 10.1175/JCLI-D-18-0761.1
    Lindsay R W, Zhang J. 2005. The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point?. J Climate, 18(22): 4879-4894
    Lindsay R W,Zhang J,Schweiger A,et al. 2009. Arctic sea ice retreat in 2007 follows thinning trend. J Climate,22(1):165-176 doi: 10.1175/2008JCLI2521.1
    Luo R,Wu Z W,Zhang P,et al. 2019. Potential influence of a developing La Niña on the sea-ice reduction in the Barents-Kara seas. Atmos-Ocean,57(3):182-194 doi: 10.1080/07055900.2019.1587375
    Mahajan S,Zhang R,Delworth T L. 2011. Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J Climate,24(24):6573-6581 doi: 10.1175/2011JCLI4002.1
    Menary M B,Kuhlbrodt T,Ridley J,et al. 2018. Preindustrial control simulations with HadGEM3-GC3.1 for CMIP6. J Adv Model Earth Syst,10(12):3049-3075
    Miles M W,Divine D V,Furevik T,et al. 2014. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys Res Lett,41(2):463-469 doi: 10.1002/2013GL058084
    Newman M,Alexander M A,Ault T R,et al. 2016. The Pacific decadal oscillation,revisited. J Climate,29(12):4399-4427 doi: 10.1175/JCLI-D-15-0508.1
    Nigam S, Sengupta A, Ruiz-Barradas A. 2020. Atlantic–Pacific links in observed multidecadal SST variability: Is the Atlantic multidecadal oscillation's phase reversal orchestrated by the Pacific decadal oscillation?. J Climate, 33(13): 5479-5505
    Ortega P,Robson J,Sutton R T,et al. 2017. Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model. Climate Dyn,49(7-8):2625-2647 doi: 10.1007/s00382-016-3467-y
    Parkinson C L. 2014. Global sea ice coverage from satellite data:Annual cycle and 35-Yr trends. J Climate,27(24):9377-9382 doi: 10.1175/JCLI-D-14-00605.1
    Polyakov I V,Alekseev G V,Bekryaev R V,et al. 2003. Long-term ice variability in Arctic marginal seas. J Climate,16(12):2078-2085 doi: 10.1175/1520-0442(2003)016<2078:LIVIAM>2.0.CO;2
    Polyakov I V,Timokhov L A,Alexeev V A,et al. 2010. Arctic ocean warming contributes to reduced polar ice cap. J Phys Oceanogr,40(12):2743-2756 doi: 10.1175/2010JPO4339.1
    Polyakov I V,Pnyushkov A V,Alkire M B,et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science,356(6335):285-291 doi: 10.1126/science.aai8204
    Rayner N A,Parker D E,Horton E B,et al. 2003. Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century. J Geophys Res,108(D14):4407 doi: 10.1029/2002JD002670
    Ridley J K,Blockley E W,Keen A B,et al. 2018. The sea ice model component of HadGEM3-GC3.1. Geosci Model Dev,11(2):713-723 doi: 10.5194/gmd-11-713-2018
    Rigor I G,Wallace J M,Colony R L. 2002. Response of sea ice to the Arctic Oscillation. J Climate,15(18):2648-2663 doi: 10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
    Rothrock D A,Yu Y,Maykut G A. 1999. Thinning of the Arctic sea-ice cover. Geophys Res Lett,26(23):3469-3472 doi: 10.1029/1999GL010863
    Rothrock D A, Zhang J. 2005. Arctic Ocean sea ice volume: What explains its recent depletion?. J Geophys Res, 110(C1): C01002
    Screen J A,Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature,464(7293):1334-1337 doi: 10.1038/nature09051
    Screen J A,Deser C,Simmonds I,et al. 2014. Atmospheric impacts of Arctic sea-ice loss,1979–2009:Separating forced change from atmospheric internal variability. Climate Dyn,43(1-2):333-344 doi: 10.1007/s00382-013-1830-9
    Serreze M C,Holland M M,Stroeve J. 2007. Perspectives on the Arctic's shrinking sea-ice cover. Science,315(5818):1533-1536 doi: 10.1126/science.1139426
    Serreze M C,Stroeve J,Barrett A P,et al. 2016. Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent:A cautionary tale. J Geophys Res,121(19):11463-11485
    Serreze M C,Meier W N. 2019. The Arctic's sea ice cover:Trends,variability,predictability,and comparisons to the Antarctic. Ann N Y Acad Sci,1436(1):36-53 doi: 10.1111/nyas.13856
    Shimada K,Kamoshida T,Itoh M,et al. 2006. Pacific Ocean inflow:Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett,33(8):L08605
    Spreen G,Kwok R,Menemenlis D. 2011. Trends in Arctic sea ice drift and role of wind forcing:1992-2009. Geophys Res Lett,38(19):L19501
    Steele M,Ermold W,Zhang J L. 2008. Arctic Ocean surface warming trends over the past 100 years. Geophys Res Lett,35(2):L02614
    Stirling I,Parkinson C L. 2006. Possible effects of climate warming on selected populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic,59(3):261-275
    Stroeve J,Holland M M,Meier W,et al. 2007. Arctic sea ice decline:Faster than forecast. Geophys Res Lett,34(9):L09501
    Stroeve J C,Serreze M C,Holland M M,et al. 2012. The Arctic's rapidly shrinking sea ice cover:A research synthesis. Clim Change,110(3-4):1005-1027 doi: 10.1007/s10584-011-0101-1
    Sun C,Kucharski F,Li J P,et al. 2017. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Commun,8(1):15998 doi: 10.1038/ncomms15998
    Sutton R T,Hodson D L R. 2005. Atlantic ocean forcing of North American and European summer climate. Science,309(5731):115-118 doi: 10.1126/science.1109496
    Sutton R T,Dong B. 2012. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci,5(11):788-792 doi: 10.1038/ngeo1595
    Takaya K,Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci,58(6):608-627 doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    Trenberth K E,Shea D J. 2006. Atlantic hurricanes and natural variability in 2005. Geophys Res Lett,33(12):L12704 doi: 10.1029/2006GL026894
    Vihma T. 2014. Effects of Arctic sea ice decline on weather and climate:A review. Surv Geophys,35(5):1175-1214 doi: 10.1007/s10712-014-9284-0
    Wallace J M,Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev,109(4):784-812 doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    Walsh J E,Johnson C M. 1979. An analysis of Arctic sea ice fluctuations,1953–77. J Phys Oceanogr,9(3):580-591 doi: 10.1175/1520-0485(1979)009<0580:AAOASI>2.0.CO;2
    Wang J, Zhang J L, Watanabe E, et al. 2009. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?. Geophys Res Lett, 36(5): L05706
    Wu B Y,Wang J,Walsh J E. 2006. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Climate,19(2):210-225 doi: 10.1175/JCLI3619.1
    Wu B Y,Johnson M A. 2007. A seesaw structure in SLP anomalies between the Beaufort Sea and the Barents Sea. Geophys Res Lett,34(5):L05811
    Wu B Y,Overland J E,D'Arrigo R. 2012. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend. Tellus A,64(1):18590 doi: 10.3402/tellusa.v64i0.18590
    Wu M Q,Jia L L,Xing Q G,et al. 2018. Spatio-temporal variation of Arctic sea ice in summer from 2003 to 2013. Chinese Geogra Sci,28(1):38-46 doi: 10.1007/s11769-017-0929-z
    Yao S L,Zhou W,Jin F F,et al. 2021. North Atlantic as a trigger for Pacific-wide decadal climate change. Geophys Res Lett,48(18):e2021GL094719
    Yu L J,Zhong S Y,Zhou M Y,et al. 2019. Revisiting the linkages between the variability of atmospheric circulations and Arctic melt-season sea ice cover at multiple time scales. J Climate,32(5):1461-1482 doi: 10.1175/JCLI-D-18-0301.1
    Zhang R,Delworth T L. 2007. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett,34(23):L23708
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  11
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 录用日期:  2022-12-23
  • 修回日期:  2022-07-08
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回