彭飞,李晓莉,陈静,赵滨. 2023. CMA全球集合预报系统误差增长及预报性能的尺度依赖特征诊断分析. 气象学报,81(4):605-618. DOI: 10.11676/qxxb2023.20220139
引用本文: 彭飞,李晓莉,陈静,赵滨. 2023. CMA全球集合预报系统误差增长及预报性能的尺度依赖特征诊断分析. 气象学报,81(4):605-618. DOI: 10.11676/qxxb2023.20220139
Peng Fei, Li Xiaoli, Chen Jing, Zhao Bin. 2023. Diagnostic analysis on the scale-dependent features in error growth and forecast performance of the CMA global ensemble prediction system. Acta Meteorologica Sinica, 81(4):605-618. DOI: 10.11676/qxxb2023.20220139
Citation: Peng Fei, Li Xiaoli, Chen Jing, Zhao Bin. 2023. Diagnostic analysis on the scale-dependent features in error growth and forecast performance of the CMA global ensemble prediction system. Acta Meteorologica Sinica, 81(4):605-618. DOI: 10.11676/qxxb2023.20220139

CMA全球集合预报系统误差增长及预报性能的尺度依赖特征诊断分析

Diagnostic analysis on the scale-dependent features in error growth and forecast performance of the CMA global ensemble prediction system

  • 摘要: 利用CMA全球集合预报(CMA-GEPS)业务系统2020年6月1日至2021年5月31日一整年的500 hPa位势高度场(H500)预报数据,诊断评估了CMA-GEPS在北半球地区误差增长及预报性能的尺度依赖特征。使用谱滤波方法实现H500不同尺度(包括行星尺度、天气尺度与次天气尺度)分量的分离。从集合平均均方根误差(简称集合平均误差)-离散度关系来看,在预报前期(108 h之前),CMA-GEPS集合平均误差小于集合离散度,存在过度发散的问题,主要是由天气尺度分量离散度过大导致;在预报后期(108 h之后),CMA-GEPS集合平均误差大于集合离散度,离散度偏小,是由行星尺度与天气尺度分量离散度不足共同引起。采用Dalcher等1987年修订的误差增长模型对H500集合平均预报误差增长特征进行诊断分析,发现CMA-GEPS误差增长过程合理,初始误差在次天气尺度上增长最快,行星尺度上增长最慢;就绝对(相对)误差而言,模式误差对预报误差的影响随空间尺度的增大而增大(减小)。此外,将使用1989至2018年共计30 a的ERA-Interim再分析逐日数据得到的气候态分布作为参考预报,通过连续分级概率预报技巧评分(Continuously Ranked Probability Skill Score,CRPSS)检验了CMA-GEPS H500及其不同尺度分量的概率预报技巧。结果表明,行星尺度分量概率预报技巧最高,次天气尺度分量最小,未经滤波的H500预报技巧位于行星尺度与天气尺度分量预报技巧之间。上述诊断结果可为CMA-GEPS改进方向提供一定的客观依据。

     

    Abstract: Using the 500 hPa geopotential height (H500) forecast data of the CMA global ensemble prediction operational system (CMA-GEPS) for a 1-year period from 1 June 2020 to 31 May 2021, the scale-dependent characteristics of error growth and forecast performance of the CMA-GEPS in the Northern Hemisphere are evaluated. The H500 field is decomposed into different scales (including the planetary scale, the synoptic scale and the sub-synoptic scale) by using the spectral filtering method. The relationship between the Root Mean Square Error of the ensemble mean (RMSE) and ensemble spread (SPD) indicates that the CMA-GEPS is over-dispersive (RMSE is smaller than SPD) in the early forecast stage (before 108 h), which is mainly attributed to the excessive dispersion on the synoptic scale. In the subsequent forecast period (beyond 108 h), the CMA-GEPS is under-dispersive (RMSE is greater than SPD), which is caused by insufficient spread on both the planetary scale and the synoptic scale. The error growth model modified by Dalcher et al. in 1987 is applied to diagnose the characteristics of the H500 forecast error growth. It is found that the error growth processes of CMA-GEPS are reasonable, and the initial error grows fastest on the sub-synoptic scale and slowest on the planetary scale. In terms of absolute (relative) errors, impacts of model errors on forecast errors increase (decrease) with increasing spatial scale. In addition, taking the climatological distribution derived from the daily dataset of the ERA-Interim reanalysis for 30 years from 1989 to 2018 as the reference forecast, the Continuously Ranked Probability Skill Score (CRPSS) is computed to verify the probabilistic forecast skills of H500 within CMA-GEPS together with its components on different scales. Results reveal that the forecast skills for the planetary scale are the highest, and those for the sub-synoptic scale are the lowest. Moreover, the probabilistic skills of the unfiltered H500 lie between skills of the planetary and synoptic scales. Above diagnostic results can provide an objective basis for further improvement of the CMA-GEPS.

     

/

返回文章
返回