留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4—9月东北大陆型冷涡消亡方式及其统计特征

范子琪 朱科锋 薛明

范子琪,朱科锋,薛明. 2023. 4—9月东北大陆型冷涡消亡方式及其统计特征. 气象学报,81(5):727-740 doi: 10.11676/qxxb2023.20220171
引用本文: 范子琪,朱科锋,薛明. 2023. 4—9月东北大陆型冷涡消亡方式及其统计特征. 气象学报,81(5):727-740 doi: 10.11676/qxxb2023.20220171
Fan Ziqi, Zhu Kefeng, Xue Ming. 2023. Decay processes and statistical characteristics of continental Northeast China Cold Vortex from April to September. Acta Meteorologica Sinica, 81(5):727-740 doi: 10.11676/qxxb2023.20220171
Citation: Fan Ziqi, Zhu Kefeng, Xue Ming. 2023. Decay processes and statistical characteristics of continental Northeast China Cold Vortex from April to September. Acta Meteorologica Sinica, 81(5):727-740 doi: 10.11676/qxxb2023.20220171

4—9月东北大陆型冷涡消亡方式及其统计特征

doi: 10.11676/qxxb2023.20220171
基金项目: 国家自然科学基金项目(41730965)、国家重点研发计划重点专项(2018YFC1507303)。
详细信息
    作者简介:

    范子琪,主要从事东北冷涡及其强对流研究。E-mail:zqfan@smail.nju.edu.cn

    通讯作者:

    薛明,主要从事强对流天气机理和预报研究。 E-mail:mxue@ou.edu

  • 中图分类号: P468 P434

Decay processes and statistical characteristics of continental Northeast China Cold Vortex from April to September

  • 摘要: 利用ERA-Interim再分析数据,主观识别了2009—2018年4—9月东北冷涡,并根据冷涡所在位置将其客观聚类为5类,其中3类大陆型冷涡主要影响中国东北地区,称为西北类、东北类和东南类冷涡。东北冷涡的消亡方式主要有2种,一是系统高层受非绝热加热侵蚀,二是被平流层高位涡源再吸收。对比分析非绝热消亡和再吸收消亡方式3类大陆型冷涡统计特征的差异及原因。结果表明:(1)西北类和东南类冷涡以非绝热消亡为主而东北类冷涡以再吸收消亡为主;(2)再吸收消亡冷涡强度一般强于非绝热消亡冷涡,这主要是由于前者的北侧平流层高位涡源持续向冷涡系统补充高值位涡,而后者强度不断被降水潜热释放削弱;(3)非绝热消亡冷涡持续时间比再吸收消亡冷涡长,且前者消亡阶段时间占生命期的比例更大;(4)降水和高空槽与冷涡的位置关系是影响冷涡消亡的主要因素。在冷涡气旋环流内部接近冷涡中心的较强降水能直接侵蚀高层冷涡内核区,导致其非绝热消亡;冷涡位于高空槽前或槽底有利于冷涡向北平流以被高位涡源再吸收而消亡。

     

  • 图 1  2009—2018年4—9月500 hPa东北冷涡中心成熟时刻空间分布 (不同颜色数字和圆点代表K-means客观聚类后的冷涡类别,其中较大黑边彩色点代表各类平均冷涡中心位置)

    Figure 1.  Spatial distribution of the NCCV center at its mature phase from April to September during 2009—2018 (colored dots and numbers represent different kinds of the NCCV objective clusters,large colored dots with black edge represent mean locations of the objective clusters)

    图 2  大陆型冷涡 (a) 持续时间和 (b) 强度频率 (柱状) 与频次 (折线) 分布

    Figure 2.  Probability (bars) and number (lines) of (a) lifetime and (b) intensity of continental NCCVs

    图 3  2009—2018年4—9月大陆型冷涡路径分布 (a. 西北类,b. 东北类,c. 东南类;黑线代表冷涡过程路径,红、黑和蓝点分别代表初始、成熟和消亡时刻冷涡中心位置)

    Figure 3.  Tracks of continental NCCVs (a. northwest vortex,b. northeast vortex,c. southeast vortex;black lines represent the tracks of the NCCVs;red,black and blue dots represent center locations of the NCCVs at their initial,mature,and decay phases,respectively)

    图 4  大陆型冷涡消亡阶段持续时间与总持续时间之比的频率 (柱状)与频次 (折线)分布

    Figure 4.  Probability (bars) and number (lines) of the continental NCCV decay phase

    图 5  大陆型冷涡消亡方式频率分布 (数字代表样本数)

    Figure 5.  Probability of the ways of decay for continental NCCVs (the number of NCCV cases is shown on the bar)

    图 6  不同消亡方式下大陆型冷涡平均 (a) 强度、(b) 消亡时刻纬度分布、(c) 冷涡持续时间及 (d) 消亡阶段持续时间占比 (FDP) (箱线的上、下限分别代表75百分位和25百分位,箱内黑线代表中位数,箱上、下黑线分别代表最大值和最小值)

    Figure 6.  Box-and-whiskers plots of the continental NCCV mean intensity (a),latitude at decay phase (b),lifetime (c),and FDP (d) under two decay scenarios (shaded boxes span over the 25th and 75th percentiles,and whiskers extend downward to the minimum and upward to the maximum of the data,median values are marked by black lines in the boxes)

    图 7  两种消亡方式大陆型冷涡 (a、b) 强度和 (c、d) 消亡时刻纬度分布及 (e、f) 冷涡持续时间的对比 (箱线的上、下限分别代表75百分位和25百分位,箱内黑线代表中位数,箱上、下黑线分别代表最大值和最小值)

    Figure 7.  Box-and-whiskers plots of the continental NCCV mean (a,b) intensity,(c,d) latitude at decay phase and (e,f) lifetime under two decay scenarios (shaded boxes span over the 25th and 75th percentiles,and whiskers extend downward to the minimum and upward to the maximum of the data,median values are marked by black lines in the boxes)

    图 8  东南类冷涡300—200 hPa平均位涡距平水平分布 (a. 非绝热消亡,b. 再吸收消亡;红色等值线、灰阶和蓝色等值线分别代表初始、成熟和消亡时刻位涡分布,单位:PVU;星形代表冷涡位置)

    Figure 8.  Horizontal distributions of mean potential vorticity anomalies of southeast vortex between 200—300 hPa (a. diabatic decay,b. reabsorption;the red,gray and blue contours represent potential vorticity (unit:PVU) distribution at the initial,mature and decay phase,respectively;the stars represent the locations of the NCCVs)

    图 9  两种消亡方式大陆型冷涡成熟阶段日累计降水量 (a、b. 西北类冷涡,c、d. 东北类冷涡,e、f. 东南类冷涡;a、c、e. 非绝热消亡冷涡,b、d、f. 再吸收消亡冷涡;红色等值线为冷涡成熟时刻850 hPa位势高度,单位:gpm;色阶为日累计降水量;箭头为冷涡成熟时刻850 hPa风场)

    Figure 9.  Composite daily accumulated precipitation at mature phase of continental vortex under the two decay scenarios (a,b. northwest vortex,c,d. northeast vortex,e,f. southeast vortex;a,c,e. diabatic decay NCCVs,b,d,f. reabsorption decay NCCVs;red contours represent geopotential height at 850 hPa,unit:gpm;shadings represents daily accumulated precipitation;and arrows represent horizontal wind at 850 hPa at the mature phase)

    图 10  两种消亡方式大陆型冷涡消亡时刻250 hPa形势场 (a、b. 西北类冷涡,c、d. 东北类冷涡,e、f. 东南类冷涡;a、c、e. 非绝热消亡冷涡,b、d、f. 再吸收消亡冷涡;黑色等值线为250 hPa位势高度,单位:gpm;红色等值线为消亡时刻300—200 hPa平均位涡距平分布,单位:PVU;色阶为250 hPa经向风风速,箭头代表250 hPa水平风场)

    Figure 10.  Continental vortex composite environmental conditions at decay phase under the two decay scenarios (a,b. northwest vortex,c,d. northeast vortex,e,f. southeast vortex;a,c,e. diabatic decay,b,d,f. reabsorption decay;geopotential height at 250 hPa,black contours,unit:gpm; v-component wind velocity at 250 hPa,shaded, horizontal wind at 250 hPa,vectors;and potential vorticity anomaly between 200—300 hPa,red contours,unit:PVU)

  • [1] 才奎志,姚秀萍,孙晓巍等. 2022. 冷涡背景下辽宁龙卷气候特征和环境条件. 气象学报,80(1):82-92 doi: 10.11676/qxxb2021.063

    Cai K Z,Yao X P,Sun X W,et al. 2022. Climatic characteristics and environmental conditions of tornadoes in Liaoning under the background of cold vortex. Acta Meteor Sinica,80(1):82-92 (in Chinese) doi: 10.11676/qxxb2021.063
    [2] 陈相甫,赵宇. 2021. 冷涡背景下东北地区短时强降水统计特征. 高原气象,40(3):510-524

    Chen X F,Zhao Y. 2021. Statistical analysis on hourly heavy rainfall in northeast China induced by cold vortices. Plateau Meteor,40(3):510-524 (in Chinese)
    [3] 迟静,周玉淑,冉令坤等. 2021. 吉林一次极端降水发生发展动热力过程的数值模拟分析. 大气科学,45(6):1400-1414

    Chi J,Zhou Y S,Ran L K,et al. 2021. Numerical simulation analysis on the generation and evolution of the dynamic and thermodynamic processes of an extreme rainfall in Jilin province. Chinese J Atmos Sci,45(6):1400-1414 (in Chinese)
    [4] 何金海,吴志伟,江志红等. 2006. 东北冷涡的“气候效应”及其对梅雨的影响. 科学通报,51(23):2803-2809. He J H,Wu Z W,Jiang Z H,et al. 2007. "Climate effect" of the northeast cold vortex and its influences on Meiyu. Chinese Sci Bull,52(5):671-679.
    [5] 何晗,谌芸,肖天贵等. 2015. 冷涡背景下短时强降水的统计分析. 气象,41(12):1466-1476 doi: 10.7519/j.issn.1000-0526.2015.12.004

    He H,Chen Y,Xiao T G,et al. 2015. Statistical analysis of severe short-time precipitation under cold vortex background. Meteor Mon,41(12):1466-1476 (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.12.004
    [6] 李永生,刘伯奇,王莹等. 2016. 非绝热加热对6月东北冷涡形成演变的影响及其可能机制. 气象与环境学报,32(6):19-26 doi: 10.3969/j.issn.1673-503X.2016.06.003

    Li Y S,Liu B Q,Wang Y,et al. 2016. Effect and possible mechanism of diabatic heating on evolution of cold vortex over Northeast China in June. J Meteor Environ,32(6):19-26 (in Chinese) doi: 10.3969/j.issn.1673-503X.2016.06.003
    [7] 刘英,王东海,张中锋等. 2012. 东北冷涡的结构及其演变特征的个例综合分析. 气象学报,70(3):354-370 doi: 10.11676/qxxb2012.032

    Liu Y,Wang D H,Zhang Z F,et al. 2012. A comprehensive analysis of the structure of a Northeast China-Cold-Vortex and its characteristics of evolution. Acta Meteor Sinica,70(3):354-370 (in Chinese) doi: 10.11676/qxxb2012.032
    [8] 沈艳,潘旸,宇婧婧等. 2013. 中国区域小时降水量融合产品的质量评估. 大气科学学报,36(1):37-46 doi: 10.3969/j.issn.1674-7097.2013.01.005

    Shen Y,Pan Y,Yu J J,et al. 2013. Quality assessment of hourly merged precipitation product over China. Trans Atmos Sci,36(1):37-46 (in Chinese) doi: 10.3969/j.issn.1674-7097.2013.01.005
    [9] 孙力,郑秀雅,王琪. 1994. 东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系. 应用气象学报,5(3):297-303

    Sun L,Zheng X Y,Wang Q. 1994. The climatological characteristics of northeast cold vortex in China. Quart J Appl Meteor,5(3):297-303 (in Chinese)
    [10] 孙力,王琪,唐晓玲. 1995. 暴雨类冷涡与非暴雨类冷涡的合成对比分析. 气象,21(3):7-10

    Sun L,Wang Q,Tang X L. 1995. A composite diagnostic analysis of cold vortex of storm-rainfall and non-storm rainfall types. Meteor Mon,21(3):7-10 (in Chinese)
    [11] 孙力. 1997. 东北冷涡持续活动的分析研究. 大气科学,21(3):297-307 doi: 10.3878/j.issn.1006-9895.1997.03.06

    Sun L. 1997. A study of the persistence activity of Northeast cold vortex in China. Sci Atmos Sinica,21(3):297-307 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.03.06
    [12] 王蕾,王承伟,闫敏慧. 2020. 2000—2017年东北冷涡活动气候特征及分析. 黑龙江气象,37(1):15-18 doi: 10.3969/j.issn.1002-252X.2020.01.004

    Wang L,Wang C W,Yan M H. 2020. Climate characteristics and analysis of Northeast China cold vortex activity from 2000 to 2017. Heilongjiang Meteor,37(1):15-18 (in Chinese) doi: 10.3969/j.issn.1002-252X.2020.01.004
    [13] 吴迪,寿绍文,姚秀萍. 2010a. 东北冷涡暴雨过程中干侵入特征及其与降水落区的关系. 暴雨灾害,29(2):111-116

    Wu D,Shou S W,Yao X P. 2010a. Dry intrusion's feature and its relationship with rainfall regions on cold vortex heavy rain process in Northeast China. Torr Rain Disaster,29(2):111-116 (in Chinese)
    [14] 吴迪,姚秀萍,寿绍文. 2010b. 干侵入对一次东北冷涡过程的作用分析. 高原气象,29(5):1208-1217

    Wu D,Yao X P,Shou S W. 2010b. Analysis of impact of dry intrusion on a cold vortex process in Northeast China. Plateau Meteor,29(5):1208-1217 (in Chinese)
    [15] 谢作威,布和朝鲁. 2012. 东北冷涡低频活动特征及背景环流. 气象学报,70(4):704-716 doi: 10.11676/qxxb2012.057

    Xie Z W,Cholaw B. 2012. Low frequency characteristics of northeast China cold vortex and its background circulation pattern. Acta Meteor Sinica,70(4):704-716 (in Chinese) doi: 10.11676/qxxb2012.057
    [16] 闫玉琴,韩秀君,毛贤敏. 1995. 东北冷涡的环流形势分类及其谱特征. 辽宁气象,(4):3-6

    Yan Y Q,Han X J,Mao X M. 1995. Classification of the northeast cold vortex at circulation situation and its spectrum signature. Liaoning Meteor Quart,(4):3-6 (in Chinese)
    [17] 杨磊,郑永光. 2023. 东北地区雷暴大风观测特征及其与东北冷涡的关系研究. 气象学报,81(3):416-429

    Yang L,Zheng Y G. 2023. Observational characteristics of thunderstorm gusts in Northeast China and their association with the Northeast China Cold Vortex. Acta Meteor Sinica,81(3):416-429 (in Chinese)
    [18] 应爽,袁大宇,李尚锋. 2014. 一次东北冷涡不同阶段强对流天气特征对比分析. 气象与环境学报,30(4):9-18

    Ying S,Yuan D Y,Li S F. 2014. Comparative analysis of severe convective weather characteristics in different stages of Northeast China cold vortex. J Meteor Environ,30(4):9-18 (in Chinese)
    [19] 张仙,谌芸,王磊等. 2013. 冷涡背景下京津冀地区连续降雹统计分析. 气象,39(12):1570-1579 doi: 10.7519/j.issn.1000-0526.2013.12.005

    Zhang X,Chen Y,Wang L,et al. 2013. Statistical analysis of continuous hailfall under the background of cold vortex in the Beijing-Tianjin-Hebei region. Meteor Mon,39(12):1570-1579 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.12.005
    [20] 张云,雷恒池,钱贞成. 2008. 一次东北冷涡衰退阶段暴雨成因分析. 大气科学,32(3):481-498 doi: 10.3878/j.issn.1006-9895.2008.03.06

    Zhang Y,Lei H C,Qian Z C. 2008. Analyses of formation mechanisms of a rainstorm during the declining phase of a northeast cold vortex. Chinese J Atmos Sci,32(3):481-498 (in Chinese) doi: 10.3878/j.issn.1006-9895.2008.03.06
    [21] 郑秀雅, 张廷治, 白人海. 1992. 东北暴雨. 北京: 气象出版社, 129-151.

    Zheng X Y, Zhang T Z, Bai R H. 1992. Heavy Rain over Northeastern China. Beijing: China Meteorological Press, 129-151 (in Chinese)
    [22] Abulikemu A,Wang Y,Gao R X,et al. 2019. A numerical study of convection initiation associated with a gust front in Bohai Bay Region,North China. J Geophys Res:Atmos,124(24):13843-13860 doi: 10.1029/2019JD030883
    [23] Berrisford P, Dee D P, Poli P, et al. 2011. The ERA-interim archive version 2.0. Shinfield Park: ECMWF
    [24] Cai S X,Huang A N,Zhu K F,et al. 2021. Diurnal cycle of summer precipitation over the Eastern Tibetan Plateau and surrounding regions simulated in a convection-permitting model. Climate Dyn,57(1):611-632
    [25] Chen Y,Hu Q,Yang Y M,et al. 2017. Anomaly based analysis of extreme heat waves in Eastern China during 1981—2013. Int J Climatol,37(1):509-523 doi: 10.1002/joc.4724
    [26] Fang Y H,Chen H S,Lin Y,et al. 2021. Classification of northeast China Cold Vortex activity paths in early summer based on K-means clustering and their climate impact. Adv Atmos Sci,38(3):400-412 doi: 10.1007/s00376-020-0118-3
    [27] Gouget H,Vaughan G,Marenco A,et al. 2000. Decay of a cut-off low and contribution to stratosphere-troposphere exchange. Quart J Roy Meteor Soc,126(564):1117-1141 doi: 10.1002/qj.49712656414
    [28] Hoskins B J,McIntyre M E,Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc,111(470):877-946 doi: 10.1002/qj.49711147002
    [29] Hu K X,Lu R Y,Wang D H. 2010. Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteor Atmos Phys,106(1):37-48
    [30] Joyce R J,Janowiak J E,Arkin P A,et al. 2004. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeor,5(3):487-503 doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
    [31] Liu Z J,Liu Y S,Wang S S,et al. 2018. Evaluation of spatial and temporal performances of ERA-Interim precipitation and temperature in Mainland China. J Climate,31(11):4347-4365 doi: 10.1175/JCLI-D-17-0212.1
    [32] Lloyd S. 1982. Least squares quantization in PCM. IEEE Trans Inform Theory,28(2):129-137 doi: 10.1109/TIT.1982.1056489
    [33] Portmann R,Crezee B,Quinting J,et al. 2018. The complex life cycles of two long-lived potential vorticity cut-offs over Europe. Quart J Roy Meteor Soc,144(712):701-719 doi: 10.1002/qj.3239
    [34] Portmann R,Sprenger M,Wernli H. 2021. The three-dimensional life cycles of potential vorticity cutoffs:A global and selected regional climatologies in ERA-Interim (1979—2018). Wea. Climate Dyn,2(2):507-534
    [35] Price J D,Vaughan G. 1993. The potential for stratosphere-troposphere exchange in cut-off-low systems. Quart J Roy Meteor Soc,119(510):343-365 doi: 10.1002/qj.49711951007
    [36] Rossa A,Wernli H,Davies H C. 2000. Growth and decay of an extra-tropical cyclone's PV-tower. Meteor Atmos Phys,73(3):139-156
    [37] Rousseeuw P J. 1987. Silhouettes:A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math,20:53-65 doi: 10.1016/0377-0427(87)90125-7
    [38] Shapiro M A. 1978. Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems. Mon Wea Rev,106(8):1100-1111 doi: 10.1175/1520-0493(1978)106<1100:FEOTMA>2.0.CO;2
    [39] Shen Y,Zhao P,Pan Y,et al. 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J Geophys Res:Atmos,119(6):3063-3075 doi: 10.1002/2013JD020686
    [40] Song L N,Liu Z L,Wang F. 2015. Comparison of wind data from ERA-Interim and buoys in the Yellow and East China Seas. Chinese J Oceanol Limnol,33(1):282-288 doi: 10.1007/s00343-015-3326-4
    [41] Su T,Zhai G Q. 2017. The role of convectively generated gravity waves on convective initiation:A case study. Mon Wea Rev,145(1):335-359 doi: 10.1175/MWR-D-16-0196.1
    [42] Uccellini L W. 1990. Processes contributing to the rapid development of extratropical cyclones∥Newton C W, Holopainen E O. Extratropical Cyclones. Boston: American Meteorological Society, 81-105
    [43] Wirth V. 1995. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere-troposphere exchange. Quart J Roy Meteor Soc,121(521):127-147 doi: 10.1002/qj.49712152107
    [44] Wu Y,Huang A N,Huang D Q,et al. 2018. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau. Climate Dyn,51(11):4287-4307
    [45] Xia R D,Zhang D L. 2019. An observational analysis of three extreme rainfall episodes of 19—20 July 2016 along the Taihang Mountains in North China. Mon Wea Rev,147(11):4199-4220 doi: 10.1175/MWR-D-18-0402.1
    [46] Xu J Y,Tian R X,Feng S. 2021. Comparison of atmospheric vertical motion over China in ERA-Interim,JRA-55,and NCEP/NCAR reanalysis datasets. Asia-Pacific J Atmos Sci,57(4):773-786 doi: 10.1007/s13143-021-00226-5
    [47] Zhang C,Zhang Q,Wang Y,et al. 2008. Climatology of warm season cold vortices in East Asia:1979—2005. Meteorol Atmos Phys,100(1):291-301
    [48] Zhao S X,Sun J H. 2007. Study on cut-off low-pressure systems with floods over Northeast Asia. Meteor Atmos Phys,96(1):159-180
    [49] Zhu K F,Yu B Y,Xue M,et al. 2021. Summer season precipitation biases in 4 km WRF forecasts over Southern China:Diagnoses of the causes of biases. J Geophys Res:Atmos,126(23):e2021JD035530 doi: 10.1029/2021JD035530
  • 加载中
图(10)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  63
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2023-06-04
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回