留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMA-BJ 2.0版逐时快速更新追赶循环同化预报系统研发及应用Ⅰ:资料同化及系统构建

陈敏 仲跻芹 卢冰 童文雪 冯琎 张舒婷 黄向宇 范水勇

陈敏,仲跻芹,卢冰,童文雪,冯琎,张舒婷,黄向宇,范水勇. 2023. CMA-BJ 2.0版逐时快速更新追赶循环同化预报系统研发及应用Ⅰ:资料同化及系统构建. 气象学报,81(6):1-15 doi: 10.11676/qxxb2023.20220172
引用本文: 陈敏,仲跻芹,卢冰,童文雪,冯琎,张舒婷,黄向宇,范水勇. 2023. CMA-BJ 2.0版逐时快速更新追赶循环同化预报系统研发及应用Ⅰ:资料同化及系统构建. 气象学报,81(6):1-15 doi: 10.11676/qxxb2023.20220172
Chen Min, Zhong Jiqin, Lu Bing, Tong Wenxue, Feng Jin, Zhang Shuting, Huang Xiangyu, Fan Shuiyong. 2023. CMA-BJ v2.0 hourly rapid update catch-up cycling assimilation and forecast system, Part Ⅰ: Data assimilation and system overview. Acta Meteorologica Sinica, 81(6):1-15 doi: 10.11676/qxxb2023.20220172
Citation: Chen Min, Zhong Jiqin, Lu Bing, Tong Wenxue, Feng Jin, Zhang Shuting, Huang Xiangyu, Fan Shuiyong. 2023. CMA-BJ v2.0 hourly rapid update catch-up cycling assimilation and forecast system, Part Ⅰ: Data assimilation and system overview. Acta Meteorologica Sinica, 81(6):1-15 doi: 10.11676/qxxb2023.20220172

CMA-BJ 2.0版逐时快速更新追赶循环同化预报系统研发及应用Ⅰ:资料同化及系统构建

doi: 10.11676/qxxb2023.20220172
基金项目: 国家重点研发计划课题(2022YFC3004003、2018YFC1506804)、中国气象局重点创新团队(CMA2022ZD09)。
详细信息
    作者简介:

    陈敏,主要从事资料同化、数值预报业务系统研发。E-mail:mchen@ium.cn

  • 中图分类号: P456.7

CMA-BJ v2.0 hourly rapid update catch-up cycling assimilation and forecast system, Part Ⅰ: Data assimilation and system overview

  • 摘要: 介绍了CMA-BJ 2.0版区域逐时快速更新循环同化分析及短时预报业务系统在逐时更新循环和资料同化方面的关键技术特点。该系统采用分析增量更新作为初始化方案,有效抑制了初始噪声累积问题;通过充分考虑各类观测资料实际到报截断时长的差异,发展了包括循环分析和更新预报两个部分耦合的逐时追赶循环运行框架,实现了对各类观测资料充分高效的利用,也较好地兼顾了短临预报服务对逐时更新循环预报产品的时效性要求;通过在分析循环的同化背景场部分应用动态混合方案,实现了全球模式大尺度场对区域模式中小尺度热动力场发展的动态约束,有效抑制了快速更新循环预报误差累积导致的大尺度预报场变形的问题;在资料同化方面,实现了中国全国雷达反射率因子拼图资料的同化应用,并通过仅在更新预报部分开展雷达反射率资料同化以规避连续循环同化造成的水汽正向过量累积、调整雷达同化时的背景场误差的方差和长度尺度两方面的策略优化有效提升了雷达同化的应用效果;此外,在CMA-BJ 2.0版系统中实现了中国全国风廓线雷达观测资料的实时同化应用。

     

  • 图 1  CMA-BJ 2.0版系统预报区域 (D01为9 km分辨率,D02为3 km分辨率;色阶为地形高度,单位:m)

    Figure 1.  Forecast domains of the CMA-BJ v2.0 system(D01:9 km,D02:3 km;the shadow is the altitude,unit:m )

    图 2  各类GTS观测资料不同截断时间到报情况

    Figure 2.  Data arrival reporting of various GTS observations at different cut-off times

    图 3  逐时快速更新追赶循环运行时间线

    Figure 3.  The running timeline of the hourly catch-up cycle

    图 4  CMA-BJ 2.0版系统的循环分析和更新预报流程 (内圈黑色框内数字为循环分析起报时间,黑色虚线指示该次循环分析的启动时间;外圈蓝色框内为更新预报起报时间,蓝色虚线指示该次更新预报的启动时间;红色实线表示箭头所指的运行时次以箭尾所指的运行时次的1 h预报为背景场)

    Figure 4.  Flowchart of cycle analysis and forecast update of the CMA-BJ v2.0 system (the number in the black box in the inner circle is the start time of the cycle analysis,and the black dotted line indicates the start time of cycle analysis;the blue box indicates the start time of forecast update and the blue dashed line indicates the start time of forecast update;the solid red line indicates the running time denoted by the arrow,and the 1-hour forecast of the running time used as the background field is denoted by the arrow tail)

    图 5  CMA-BJ 2.0版同化应用的观测及其分布 (a. 常规地面 (红点)、高空 (蓝点)、飞机报 (绿点)、浮标 (橙点)和船舶 (粉点),b. 地基GNSS/ZTD,c. 天气雷达,d. 风廓线雷达)

    Figure 5.  Observations assimilated by the CMA-BJ v2.0 system (a. SYNOP (red),TEMP (blue),AMDAR (green),BUOY (orange),and SHIP (pink),b. Ground-based GNSS/ZTD,c. Weather radar,d. Wind profiler radar)

    图 6  2019 年1月1—31日12时起报预报的不同高度温度 (a、d, 单位:K)、比湿 (b、e,单位:kg/kg) 和风速 (c、f,单位:m/s) 平均偏差 (BIAS) 和均方根误差 (RMSE) 评分对比 (黑线:对照试验,红线:DFB试验) (a—c. 12 h预报,d—f. 24 h预报)

    Figure 6.  Upper air temperature (a,d,unit:K),specific humidity (b,e,unit:kg/kg) and wind speed (c,f,unit: m/s) scores of forecasts initialized at 12:00 UTC in January 2019 (black line:CTL,red line:DFB) (a—c. 12 h forecasts,d—f. 24 h forecasts)

    图 7  2019年6月4日09—12时、12—15时3 h累积降水观测 (a、d) 和试验RadarC (b、e)、RadarS (c、f) 于4日09时开始0—3 h (b、c) 和3—6 h (e、f) 的3 h累积降水预报

    Figure 7.  3-h accumulated precipitation valid during 09:00—12:00 UTC 4 June 2019 (a,d. observations,b,e. RadarC,c,f. RadarS;b,c are the 0—3 h forecasts,e,f are the 3—6 h forecasts)

    图 8  2019年6—8月CMA-BJ 2.0版系统9 km分辨率逐3 h累积降水预报的客观检验评分 (a. TS, b. BIAS)

    Figure 8.  3-hour accumulative precipitation forecast scores of CMA-BJ v2.0 verified against rain gauge observations in the 9 km domain from June to August 2019 (a. TS,b. BIAS)

    图 9  风廓线观测资料质量控制流程

    Figure 9.  Quality control process of wind profile observation data

    图 10  2018年6月10日00时—2018年7月1日00时经过质量控制后的风廓线观测进入同化应用的记录数和uv同化吸收率

    Figure 10.  Record number and uv assimilation absorption rate of wind profiler observations entering the assimilation after quality control from 00:00 UTC 10 June to 00:00 UTC 1 July 2018

    表  1  CMA-BJ 2.0版主要设置

    Table  1.   Configuration of the CMA-BJ v2.0

    系统设置 模式版本 WRF/ARW v4.1.2
    预报区域中心点 35°N,110°E
    网格点数 D01:649×500;D02:550×424
    网格距 D01:9 km;D02:3 km
    垂直层数/模式层顶 59/10 hPa
    更新频次 1 h
    侧边界条件 ECMWF全球预报
    预报时长 24 h/96 h(北京时08,、12时起报)
    物理方案 辐射方案 RRTMG v3.6 (Iacono,et al,2008
    边界层方案 YSU
    对流参数化方案 New Tiedtke(仅9 km区域)
    云微物理方案 Thompson
    陆面过程 Noah LSM
    资料同化 资料同化模块及版本 WRFDA v4.1.2
    同化方法 3DVar
    控制变量 风分量(u、v),温度(T),假相对湿度(RHs),地面气压(Ps
    同化资料 地面、探空、小球测风、飞机报、风廓线雷达、GNSS天顶总延迟、天气雷达反射率和径向风
    初始化方案 分析增量更新(IAU)
    下载: 导出CSV

    表  2  雷达资料同化策略

    Table  2.   The radar data assimilation strategy

    试验
    方案
    是否循环同化 雷达同化的背景场
    误差尺度因子
    RadarC 是,在循环分析步骤连续同化雷达 Var_scaling=0.5
    Len_scaling=0.5
    RadarS 否,仅在更新预报步骤同化雷达 Var_scaling=1.0
    Len_scaling=0.25
    下载: 导出CSV
  • [1] 陈葆德,王晓峰,李泓等. 2013. 快速更新同化预报的关键技术综述. 气象科技进展,3(2):29-35. Chen B D,Wang X F,Li H,et al. 2013. An overview of the key techniques in rapid refresh assimilation and forecast. Adv Meteor Sci Technol,3(2):29-35 (in Chinese

    Chen B D, Wang X F, Li H, et al. 2013. An overview of the key techniques in rapid refresh assimilation and forecast. Adv Meteor Sci Technol, 32): 29-35 (in Chinese)
    [2] 陈敏,陈明轩,范水勇. 2014. 雷达径向风观测在华北区域数值预报系统中的实时三维变分同化应用试验. 气象学报,72(4):658-677. Chen M,Chen M X,Fan S Y. 2014. The real-time radar radial velocity 3DVar assimilation experiments for application to an operational forecast model in North China. Acta Meteor Sinica,72(4):658-677 (in Chinese

    Chen M, Chen M X, Fan S Y. 2014. The real-time radar radial velocity 3DVar assimilation experiments for application to an operational forecast model in North China. Acta Meteor Sinica, 724): 658-677 (in Chinese)
    [3] 陈子通,黄燕燕,万齐林等. 2010. 快速更新循环同化预报系统的汛期试验与分析. 热带气象学报,26(1):49-54. Chen Z T,Huang Y Y,Wan Q L,et al. 2010. Rapid updating cycle assimilation and forecasting system and its experiments and analysis in flood seasons. J Trop Meteor,26(1):49-54 (in Chinese

    Chen Z T, Huang Y Y, Wan Q L, et al. 2010. Rapid updating cycle assimilation and forecasting system and its experiments and analysis in flood seasons. J Trop Meteor, 261): 49-54 (in Chinese)
    [4] 范水勇,陈敏,仲跻芹等. 2009. 北京地区高分辨率快速循环同化预报系统性能检验和评估. 暴雨灾害,28(2):119-125. Fan S Y,Chen M,Zhong J Q,et al. 2009. Performance tests and evaluations of Beijing local high-resolution rapid update cycle system. Torrential Rain Disaster,28(2):119-125 (in Chinese doi: 10.3969/j.issn.1004-9045.2009.02.004

    Fan S Y, Chen M, Zhong J Q, et al. 2009. Performance tests and evaluations of Beijing local high-resolution rapid update cycle system. Torrential Rain Disaster, 282): 119-125 (in Chinese) doi: 10.3969/j.issn.1004-9045.2009.02.004
    [5] 范水勇,王洪利,陈敏等. 2013. 雷达反射率资料的三维变分同化研究. 气象学报,71(3):527-537. Fan S Y,Wang H L,Chen M,et al. 2013. Study of the data assimilation of radar reflectivity with the WRF 3DVar. Acta Meteor Sinica,71(3):527-537 (in Chinese doi: 10.11676/qxxb2013.032

    Fan S Y, Wang H L, Chen M, et al. 2013. Study of the data assimilation of radar reflectivity with the WRF 3DVar. Acta Meteor Sinica, 713): 527-537 (in Chinese) doi: 10.11676/qxxb2013.032
    [6] 郝民,徐枝芳,陶士伟等. 2011. GRAPES RUC系统模拟研究及应用试验. 高原气象,30(6):1573-1583. Hao M,Xu Z F,Tao S W,et al. 2011. Simulation study and application experiment of GRAPES RUC system. Plateau Meteor,30(6):1573-1583 (in Chinese

    Hao M, Xu Z F, Tao S W, et al. 2011. Simulation study and application experiment of GRAPES RUC system. Plateau Meteor, 306): 1573-1583 (in Chinese)
    [7] 何静,陈敏,仲跻芹等. 2019. 雷达反射率三维拼图观测资料在北方区域数值模式预报系统中的同化应用研究. 气象学报,77(2):210-232. He J,Chen M,Zhong J Q,et al. 2019. A study of three-dimensional radar reflectivity mosaic assimilation in the regional forecasting model for North China. Acta Meteor Sinica,77(2):210-232 (in Chinese doi: 10.11676/qxxb2019.005

    He J, Chen M, Zhong J Q, et al. 2019. A study of three-dimensional radar reflectivity mosaic assimilation in the regional forecasting model for North China. Acta Meteor Sinica, 772): 210-232 (in Chinese) doi: 10.11676/qxxb2019.005
    [8] 黄丽萍,陈德辉,邓莲堂等. 2017. GRAPES_Meso V4.0主要技术改进和预报效果检验. 应用气象学报,28(1):25-37. Huang L P,Chen D H,Deng L T,et al. 2017. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci,28(1):25-37 (in Chinese doi: 10.11898/1001-7313.20170103

    Huang L P, Chen D H, Deng L T, et al. 2017. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci, 281): 25-37 (in Chinese) doi: 10.11898/1001-7313.20170103
    [9] 卢冰,孙继松,仲跻芹等. 2017. 区域数值预报系统在北京地区的降水日变化预报偏差特征及成因分析. 气象学报,75(2):248-259. Lu B,Sun J S,Zhong J Q,et al. 2017. Analysis of characteristic bias in diurnal precipitation variation forecasts and possible reasons in a regional forecast system over Beijing area. Acta Meteor Sinica,75(2):248-259 (in Chinese doi: 10.11676/qxxb2017.021

    Lu B, Sun J S, Zhong J Q, et al. 2017. Analysis of characteristic bias in diurnal precipitation variation forecasts and possible reasons in a regional forecast system over Beijing area. Acta Meteor Sinica, 752): 248-259 (in Chinese) doi: 10.11676/qxxb2017.021
    [10] 卢冰,王薇,杨扬等. 2019. WRF中土壤图及参数表的更新对华北夏季预报的影响研究. 气象学报,77(6):1028-1040. Lu B,Wang W,Yang Y,et al. 2019. Updated soil map and soil hydrologic parameters for WRF and their influences over North China during the warm season. Acta Meteor Sinica,77(6):1028-1040 (in Chinese

    Lu B, Wang W, Yang Y, et al. 2019. Updated soil map and soil hydrologic parameters for WRF and their influences over North China during the warm season. Acta Meteor Sinica, 776): 1028-1040 (in Chinese)
    [11] 许晨璐,王建捷,黄丽萍. 2017. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估. 气象学报,75(6):851-876. Xu C L,Wang J J,Huang L P. 2017. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteor Sinica,75(6):851-876 (in Chinese doi: 10.11676/qxxb2017.068

    Xu C L, Wang J J, Huang L P. 2017. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteor Sinica, 756): 851-876 (in Chinese) doi: 10.11676/qxxb2017.068
    [12] 徐枝芳,郝民,朱立娟等. 2013. GRAPES_RAFS系统研发. 气象,39(4):466-477. Xu Z F,Hao M,Zhu L J,et al. 2013. On the research and development of GRAPES_RAFS. Meteor Mon,39(4):466-477 (in Chinese doi: 10.7519/j.issn.1000-0526.2013.04.009

    Xu Z F, Hao M, Zhu L J, et al. 2013. On the research and development of GRAPES_RAFS. Meteor Mon, 394): 466-477 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.04.009
    [13] 徐枝芳,吴洋,龚建东等. 2021. CMA-MESO三维变分同化系统2 m相对湿度资料同化研究. 气象学报,79(6):943-955. Xu Z F,Wu Y,Gong J D,et al. 2021. Assimilation of 2 m relative humidity observations in CMA-MESO 3DVar system. Acta Meteor Sinica,79(6):943-955 (in Chinese doi: 10.11676/qxxb2021.060

    Xu Z F, Wu Y, Gong J D, et al. 2021. Assimilation of 2 m relative humidity observations in CMA-MESO 3DVar system. Acta Meteor Sinica, 796): 943-955 (in Chinese) doi: 10.11676/qxxb2021.060
    [14] 杨扬,卢冰,王薇等. 2021. 基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究. 气象学报,79(4):612-625. Yang Y,Lu B,Wang W,et al. 2021. Impacts of cumulus parameterization schemes on the summertime precipitation forecast in China based on the WRF model. Acta Meteor Sinica,79(4):612-625 (in Chinese doi: 10.11676/qxxb2021.045

    Yang Y, Lu B, Wang W, et al. 2021. Impacts of cumulus parameterization schemes on the summertime precipitation forecast in China based on the WRF model. Acta Meteor Sinica, 794): 612-625 (in Chinese) doi: 10.11676/qxxb2021.045
    [15] 张鑫宇,陈敏,孙娟珍等. 2021. WRF-DA中地面观测资料同化方案的改进与应用. 气象学报,79(1):104-118. Zhang X Y,Chen M,Sun J Z,et al. 2021. Improvement and application of the ground observation data assimilation scheme in WRF-DA. Acta Meteor Sinica,79(1):104-118 (in Chinese

    Zhang X Y, Chen M, Sun J Z, et al. 2021. Improvement and application of the ground observation data assimilation scheme in WRF-DA. Acta Meteor Sinica, 791): 104-118 (in Chinese)
    [16] 仲跻芹,Guo Y R,张京江. 2017. 华北地区地基GPS天顶总延迟观测的质量控制和同化应用研究. 气象学报,75(1):147-164. Zhong J Q,Guo Y R,Zhang J J. 2017. A study of quality control and assimilation of ground-based GPS ZTD in North China. Acta Meteor Sinica,75(1):147-164 (in Chinese doi: 10.11676/qxxb2017.010

    Zhong J Q, Guo Y R, Zhang J J. 2017. A study of quality control and assimilation of ground-based GPS ZTD in North China. Acta Meteor Sinica, 751): 147-164 (in Chinese) doi: 10.11676/qxxb2017.010
    [17] Baldauf M,Seifert A,Förstner J,et al. 2011. Operational convective-scale numerical weather prediction with the COSMO model:Description and sensitivities. Mon Wea Rev,139(12):3887-3905 doi: 10.1175/MWR-D-10-05013.1
    [18] Ballard S P,Li Z H,Simonin D,et al. 2016. Performance of 4D-Var NWP-based nowcasting of precipitation at the met office for summer 2012. Quart J Roy Meteor Soc,142(694):472-487 doi: 10.1002/qj.2665
    [19] Benjamin S G,Dévényi D,Weygandt S S,et al. 2004. An hourly assimilation-forecast cycle:The RUC. Mon Wea Rev,132(2):495-518 doi: 10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2
    [20] Benjamin S G,Weygandt S S,Brown J M,et al. 2016. A North American hourly assimilation and model forecast cycle:The rapid refresh. Mon Wea Rev,144(4):1669-1694 doi: 10.1175/MWR-D-15-0242.1
    [21] Bloom S C,Takacs L L,Silva A M D,et al. 1996. Data assimilation using incremental analysis updates. Mon Wea Rev,124(6):1256-1271 doi: 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
    [22] Chen M,Fan S Y,Zhong J Q,et al. 2009. A WRF-based rapid updating cycling forecast system of BMB and its performance during the summer and Olympic Games 2008. WMO Symposium on Nowcasting
    [23] Chen M,Huang X Y,Wang W. 2023. The WRF-based Incremental Analysis Updates and its implementation in an hourly cycling data assimilation system. Wea Forecasting,38(7):1063-1078 doi: 10.1175/WAF-D-22-0127.1
    [24] Chen Y D,Shen J,Fan S Y,et al. 2020. Characteristics of fengyun-4A satellite atmospheric motion vectors and their impacts on data assimilation. Adv Atmos Sci,37(11):1222-1238 doi: 10.1007/s00376-020-0080-0
    [25] Dahlgren P,Gustafsson N. 2012. Assimilating host model information into a limited area model. Tellus A Dyn Meteor Oceanogr,64(1):15836 doi: 10.3402/tellusa.v64i0.15836
    [26] Dowell D C,Alexander C R,James E P,et al. 2022. The High-Resolution Rapid Refresh (HRRR):An hourly updating convection-allowing forecast model. Part Ⅰ:Motivation and system description. Wea Forecasting,37(8):1371-1395 doi: 10.1175/WAF-D-21-0151.1
    [27] Feng J,Sun J Z,Zhang Y. 2020. A dynamic blending scheme to mitigate large-scale bias in regional models. J Adv Model Earth Syst,12(3):e2019MS001754 doi: 10.1029/2019MS001754
    [28] Feng J,Chen M,Li Y J,et al. 2021. An implementation of full cycle strategy using dynamic blending for rapid refresh short-range weather forecasting in China. Adv Atmos Sci,38(6):943-956 doi: 10.1007/s00376-021-0316-7
    [29] Guidard V,Fischer C. 2008. Introducing the coupling information in a limited-area variational assimilation. Quart J Roy Meteor Soc,134(632):723-735 doi: 10.1002/qj.215
    [30] Honda Y,Nishijima M,Koizumi K,et al. 2005. A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency:Formulation and preliminary results. Quart J Roy Meteor Soc,131(613):3465-3475 doi: 10.1256/qj.05.132
    [31] Hsiao L F,Huang X Y,Kuo Y H,et al. 2015. Blending of global and regional analyses with a spatial filter:Application to typhoon prediction over the Western North Pacific Ocean. Wea Forecasting,30(3):754-770 doi: 10.1175/WAF-D-14-00047.1
    [32] Hu M,Xue M,Gao J D,et al. 2006. 3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the fort worth,Texas,tornadic thunderstorms. Part Ⅱ:Impact of radial velocity analysis via 3DVAR. Mon Wea Rev,134(2):699-721 doi: 10.1175/MWR3093.1
    [33] Iacono M J,Delamere J S,Mlawer E J,et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models. J Geophys Res Atmos,113(D13):D13103
    [34] Ingleby N B,Lorenc A C,Ngan K,et al. 2013. Improved variational analyses using a nonlinear humidity control variable. Quart J Roy Meteor Soc,139(676):1875-1887 doi: 10.1002/qj.2073
    [35] James E P,Alexander C R,Dowell D C,et al. 2022. The High-Resolution Rapid Refresh (HRRR):An hourly updating convection-allowing forecast model. Part Ⅱ:Forecast performance. Wea Forecasting,37(8):1397-1417 doi: 10.1175/WAF-D-21-0130.1
    [36] Müller M,Homleid M,Ivarsson K I,et al. 2017. AROME-MetCoOp:A Nordic convective-scale operational weather prediction model. Wea Forecasting,32(2):609-627 doi: 10.1175/WAF-D-16-0099.1
    [37] Schraff C,Reich H,Rhodin A,et al. 2016. Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Quart J Roy Meteor Soc,142(696):1453-1472 doi: 10.1002/qj.2748
    [38] Seity Y,Brousseau P,Malardel S,et al. 2011. The AROME-France convective-scale operational model. Mon Wea Rev,139(3):976-991 doi: 10.1175/2010MWR3425.1
    [39] Skamarock W C,Klemp J B,Dudhia J,et al. 2008. A description of the advanced research WRF version 3. Boulder:National Center for Atmospheric Research
    [40] Stephan K,Klink S,Schraff C. 2008. Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Quart J Roy Meteor Soc,134(634):1315-1326 doi: 10.1002/qj.269
    [41] Wang C,Chen Y D,Chen M,et al. 2020. Data assimilation of a dense wind profiler network and its impact on convective forecasting. Atmos Res,238:104880 doi: 10.1016/j.atmosres.2020.104880
    [42] Wang C,Chen M,Chen Y D. 2022. Impact of combined assimilation of wind profiler and doppler radar data on a convective-scale cycling forecasting system. Mon Wea Rev,150(2):431-450 doi: 10.1175/MWR-D-20-0383.1
    [43] Wang H,Huang X Y,Xu D,et al. 2014. A scale-dependent blending scheme for WRFDA:Impact on regional weather forecasting. Geosci Model Dev,7(4):1819-1828 doi: 10.5194/gmd-7-1819-2014
    [44] Wang H L,Sun J Z,Fan S Y,et al. 2013. Indirect assimilation of radar reflectivity with WRF 3D-var and its impact on prediction of four summertime convective events. J Appl Meteor Climatol,52(4):889-902 doi: 10.1175/JAMC-D-12-0120.1
    [45] Wilson J W,Feng Y R,Chen M,et al. 2010. Nowcasting challenges during the Beijing Olympics:Successes,failures,and implications for future nowcasting systems. Wea Forecasting,25(6):1691-1714 doi: 10.1175/2010WAF2222417.1
    [46] Wu W S,Parrish D F,Rogers E,et al. 2017. Regional ensemble-variational data assimilation using global ensemble forecasts. Wea Forecasting,32(1):83-96 doi: 10.1175/WAF-D-16-0045.1
    [47] Xie Y H,Shi J C,Fan S Y,et al. 2018. Impact of radiance data assimilation on the prediction of heavy rainfall in RMAPS:A case study. Remote Sens,10(9):1380 doi: 10.3390/rs10091380
    [48] Xie Y H,Fan S Y,Chen M,et al. 2019. An assessment of satellite radiance data assimilation in RMAPS. Remote Sens,11(1):54
    [49] Xie Y H,Chen M,Shi J C,et al. 2020. Impacts of assimilating ATMS radiances on heavy rainfall forecast in RMAPS-ST. Remote Sens,12(7):1147 doi: 10.3390/rs12071147
    [50] Zhang Y,Chen M,Zhong J Q. 2017. A quality control method for wind profiler observations toward assimilation applications. J Atmos Oceanic Technol,34(7):1591-1606 doi: 10.1175/JTECH-D-16-0161.1
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  27
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2023-06-25
  • 网络出版日期:  2023-06-27

目录

    /

    返回文章
    返回