留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风快速增强爆发前后的背景环流和热力动力条件的演变

高拴柱 吕心艳

高拴柱,吕心艳. 2023. 台风快速增强爆发前后的背景环流和热力动力条件的演变. 气象学报,81(5):702-716 doi: 10.11676/qxxb2023.20220175
引用本文: 高拴柱,吕心艳. 2023. 台风快速增强爆发前后的背景环流和热力动力条件的演变. 气象学报,81(5):702-716 doi: 10.11676/qxxb2023.20220175
Gao Shuanzhu, Lü Xinyan. 2023. Evolution of environmental circulation and dynamic and thermodynamic conditions before and after the onset of typhoon rapid intensification. Acta Meteorologica Sinica, 81(5):702-716 doi: 10.11676/qxxb2023.20220175
Citation: Gao Shuanzhu, Lü Xinyan. 2023. Evolution of environmental circulation and dynamic and thermodynamic conditions before and after the onset of typhoon rapid intensification. Acta Meteorologica Sinica, 81(5):702-716 doi: 10.11676/qxxb2023.20220175

台风快速增强爆发前后的背景环流和热力动力条件的演变

doi: 10.11676/qxxb2023.20220175
基金项目: 国家自然科学基金项目(42175016)、上海台风研究基金项目(TFJJ202004)。
详细信息
    作者简介:

    高拴柱,主要从事台风业务预报和科学研究。E-mail:gaosz@cma.gov.cn

    通讯作者:

    吕心艳,主要从事台风业务预报和动力学研究。E-mail:lvxy@cma.gov.cn

  • 中图分类号: P456

Evolution of environmental circulation and dynamic and thermodynamic conditions before and after the onset of typhoon rapid intensification

  • 摘要: 使用1949—2020年中国气象局上海台风研究所热带气旋最佳路径资料和1991—2020年欧洲中期天气预报中心ERA-Interim再分析资料,利用200和850 hPa风场分量(uv)联合经验正交函数(EOF)分解,归纳了台风快速增强(简称RI)爆发前后的环流特征以及环境动力和热力条件的演变。结果表明,台风快速增强爆发时的EOF分解主分量低层为季风汇合型,有利于台风低层水汽输送,高层环流有明显的出流通道,可作为台风快速增强预报的典型环流形势;海表温度、水汽和对流不稳定等热力条件,以及环境风垂直切变和表征台风高层出流的高空辐散等动力条件一般能达到台风增强所需要素的适值范围。台风从一般增强到快速增强转变过程中,有利于台风增强的各环境因子并没有显著变化或突变,且有极端个例的环境因子向不利于台风增强趋势变化。该研究为今后台风快速增强预报和进一步研究提供了参考。

     

  • 图 1  1949—2020年台风生成 (黑色等值线)和快速增强爆发 (红色等值线)位置空间概率密度分布 (单位:个/(πr2),=250 km)

    Figure 1.  Probability density (unit:incidents/(πr2),= 250 km) distribution of typhoon formation locations (black contours) and locations of typhoon rapid intensification onset (red contours) from 1949 to 2020

    图 2  台风生成数 (黑色)、快速增强台风数 (蓝色)和快速增强发生次数 (红色) 的年际变化 (长圆线为1949—2020年平均,短×线为1991—2020年平均)

    Figure 2.  Interannual variations of the numbers of typhoon formation (black) and the number of rapid intensification typhoon (blue) and the number of RI (red),the lines with circle present average from 1949 to 2020,the lines with cross present average from 1991 to 2020

    图 3  台风生成数 (黑色)、快速增强台风个数 (蓝色)和台风快速增强次数 (红色) 的月际变化 (实线为1949—2020年多年平均,虚线为1991—2020年常年平均)

    Figure 3.  Monthly variation of typhoon formation number (black),the number of RI typhoon (blue), RI number (red),average number from 1949 to 2020 (solid line) and average number from 1991 to 2020 (dashed line)

    图 4  台风快速增强爆发时背景环流第一特征向量的空间模态850 hPa流场 (a) 和200 hPa流场 (b) 以及第一特征向量对应的时间系数 (c) (图a、b中的“+”为台风中心位置,纵(横)坐标为相对台风中心纬(经)度距离,图b中等值线为第一模态200 hPa流场对应散度场)

    Figure 4.  Spatial patterns of the first eigenvector of the streamline field near the typhoon center at 850 hPa (a) and 200 hPa (b) at the onset of typhoon RI,and the variation of the time coefficient of the first eigenvector (c) (in Fig. a and b,"+"denotes the typhoon center location,x-direction coordinates and y-direction coordinates are the longitudinal distance and latitudinal distance from the typhoon center,the lines in Fig. b are contours of divergence at 200 hPa)

    图 5  台风快速增强爆发时及前后EOF分解第一特征向量系数变化 (x表示−12 h的时间系数,其他时次的系数相对于x增加)

    Figure 5.  Time coefficient changes for the first eigenvector of EOF analysis before and after the onset of typhoon RI (x represents the time coefficient of −12 h,and the coefficients of other times are changes relative to x

    图 6  台风快速增强爆发前后第一特征向量 850 (a) 和 200 (b) hPa 之间差值流场 (12 h减−12 h) (“+”为台风中心位置)

    Figure 6.  Differences in streamline of the first EOF eigenvector between before and after the onset of typhoon RI (12 h minus −12 h) at 850 (a) and 200 (b) hPa ("+" denotes the typhoon center location)

    图 7  1992年6月24日18时 (a. 9203号台风“波比”路径) 和1991年10月06日12时 (b. 9122号台风“帕特”路径) 西北太平洋海表温度分布 (其中绿色线段为台风快速增强爆发前12 h到后12 h移动路径)及所有样本快速增强前后过程中海表温度的变化 (c)

    Figure 7.  Distributions of sea surface temperature over the western North Pacific at 18:00 UTC 24 June 1992 (a. typhoon tracks are for 9203 Bobbie) and 12:00 UTC 6 October 1991 (b. typhoon tracks are for 9122 Pat) (the green segment is the track for RI process from 12 h to 12 h),and box plot of temporal evolution of sea surface temperature before and after the RI onset for all samples (c)

    图 8  (a) 2019年11月14日00时和 (b) 15日00时西北太平洋可降水量及 (c) 14日00时和 (d) 15日00时西北太平洋 600 hPa 相对湿度 (台风路径为1925号台风“风神”,红色段为快速增强爆发前12 h到后12 h,台风符号为该时刻台风中心位置)

    Figure 8.  Distributions of precipitable water over the western North Pacific at 00:00 UTC 14 (a) and 00:00 UTC 15 (b),and distributions of relative humidity at 600 hPa at 00:00 UTC 14 (c) and 00:00 UTC 15 (d) November 2019 (the track is for typhoon Fengshen and the red segment is the track over the 24 h period from −12 h to 12 h,the red typhoon symbol represents the location of the typhoon center)

    图 9  台风快速增强过程中台风中心附近可降水量 (a) 和600 hPa相对湿度 (b) 及快速增强爆发前12 h台风未来移动方向上可降水量 (c) 和600 hPa相对湿度 (d)

    Figure 9.  Box plots of temporal evolutions of regional mean precipitable water (a) and relative humidity at 600 hPa (b) near the typhoon center before and after the RI onset for all samples,box plots of temporal evolution of regional mean precipitation water (c) and relative humidity at 600 hPa (d) along typhoon center moving direction for all samples

    图 10  台风移动过程中台风中心附近 (a) 和台风快速增强爆发前12 h开始台风未来移动方向上 (b) 对流有效位能变化

    Figure 10.  Box plots of temporal evolution of regional mean CAPE (a) near the typhoon center before and after RI onset for all samples, box plots of temporal evolution of regional mean CAPE (b) near the typhoon center along the moving direction at 12 h for all samples

    图 11  第一特征向量EOF1的环境风垂直分布 (a) 和200与850 hPa风场矢量 “切变环流”分布 (b),以及台风快速增强爆发前后整层 (c)、中上层 (d) 和中下层 (e) 环境风垂直切变

    Figure 11.  Vertical distribution of environmental wind (a) and spatial streamline pattern distribution of vertical wind shear between 200 and 850 hPa (b) for the first eigenvector (EOF1);box plots of temporal evolution of environmental vertical wind shear in the deep layer (c),the mid-high layer (d) and the mid-low layer (e) before and after the RI onset for all samples

    图 12  (a) EOF第一特征向量时间系数最大的个例200 hPa 流场和散度 (色阶,单位:10−6 s−1) 及 (b) 台风快速增强爆发前后台风中心周围1000 km范围内平均200 hPa散度变化

    Figure 12.  (a) Distribution of streamline and divergence (shadings) of the typhoon case with the maximum EOF1 coefficient,(b) box plot of temporal evolution of regional mean divergence at 200 hPa within 1000 km of the typhoon center (unit:10−6 s−1) before and after RI onset for all samples

    表  1  1949—2020年不同峰值强度级别的台风数量和快速增强台风个数统计

    Table  1.   Number distribution of typhoons with different peak intensity categories and RI over the period 1949—2020

    峰值级别台风数快速增强台风个数比例(%)
    超强台风 428 403 94.2
    强台风 335 258 77.0
    台风 414 210 50.7
    强热带风暴 450 40 8.9
    热带风暴 314 0 0.0
    总计 1941 911 46.9
    下载: 导出CSV

    表  2  台风快速增强爆发时850和200 hPa风场分量 (uv ) 8个特征向量的方差和累计方差贡献率

    Table  2.   Variance contributions and cumulative variance contributions of the first 8 eigenvectors of the u- and v-components at 850 and 200 hPa at the RI onset

    贡献率(%)特征向量
    12345678
    方差56.28.04.03.83.12.01.41.3
    累计方差56.264.268.272.075.177.178.579.8
    下载: 导出CSV
  • [1] 端义宏,方娟,程正泉等. 2020. 热带气旋研究和业务预报进展—第九届世界气象组织热带气旋国际研讨会(IWTC-9)综述. 气象学报,78(3):537-550 doi: 10.11676/qxxb2020.050

    Duan Y H,Fang J,Cheng Z Q,et al. 2020. Advances and trends in tropical cyclone research and forecasting:An overview of the ninth world meteorological organization international workshop on tropical cyclones (IWTC-9). Acta Meteor Sinica,78(3):537-550 (in Chinese) doi: 10.11676/qxxb2020.050
    [2] 高拴柱,董林,许映龙等. 2018. 2016年西北太平洋台风活动特征和预报难点分析. 气象,44(2):284-293 doi: 10.7519/j.issn.1000-0526.2018.02.008

    Gao S Z,Dong L,Xu Y L,et al. 2018. Analysis of the characteristics and forecast difficulties of typhoons in western north Pacific in 2016. Meteor Mon,44(2):284-293 (in Chinese) doi: 10.7519/j.issn.1000-0526.2018.02.008
    [3] 高拴柱,张胜军,吕心艳等. 2021. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报,32(3):272-288 doi: 10.11898/1001-7313.20210302

    Gao S Z,Zhang S J,Lyu X Y,et al. 2021. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in the South China Sea. J Appl Meteor Sci,32(3):272-288 (in Chinese) doi: 10.11898/1001-7313.20210302
    [4] 胡海川,董林. 2023. 一种基于集合数值预报产品的台风强度订正方法. 气象学报,81(2):316-327

    Hu H C,Dong L. 2023. A typhoon intensity correction method based on ensemble numerical forecast products. Acta Meteor Sinica,81(2):316-327 (in Chinese)
    [5] 雷小途. 2021. 中国台风联防与科研协作及其对中国台风学科发展的作用综述. 气象学报,79(3):531-540 doi: 10.11676/qxxb2021.033

    Lei X T. 2021. Overview of typhoon prevention and cooperative research and their contribution to typhoon study in China. Acta Meteor Sinica,79(3):531-540 (in Chinese) doi: 10.11676/qxxb2021.033
    [6] 吕心艳,许映龙,董林等. 2021. 2018年西北太平洋台风活动特征和预报难点分析. 气象,47(3):359-372 doi: 10.7519/j.issn.1000-0526.2021.03.009

    Lyu X Y,Xu Y L,Dong L,et al. 2021. Analysis of characteristics and forecast difficulties of TCs over northwestern Pacific in 2018. Meteor Mon,47(3):359-372 (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.03.009
    [7] 王喜,余锦华. 2011. 不同海域影响热带气旋强度变化的环境动力因素对比. 热带气象学报,27(3):387-395 doi: 10.3969/j.issn.1004-4965.2011.03.012

    Wang X,Yu J H. 2011. A comparative analysis of environmental dynamical control of change of tropical cyclones intensity in different oceans. J Trop Meteor,27(3):387-395 (in Chinese) doi: 10.3969/j.issn.1004-4965.2011.03.012
    [8] 王秀荣,张立生,李维邦. 2018. 台风灾害综合等级评判模型改进及应用分析. 气象,44(2):304-312

    Wang X R,Zhang L S,Li W B. 2018. Improvement and application analysis of the comprehensive grade evaluation model of typhoon disaster. Meteor Mon,44(2):304-312 (in Chinese)
    [9] 谢礼江,邱新法,王伟. 2013. 西北太平洋热带气旋快速增强与环境垂直风切变统计分析. 热带地理,33(3):242-249 doi: 10.13284/j.cnki.rddl.002348

    Xie L J,Qiu X F,Wang W. 2013. Rapid intensification of tropical cyclones and vertical wind shear over the northwest-Pacific. Trop Geogr,33(3):242-249 (in Chinese) doi: 10.13284/j.cnki.rddl.002348
    [10] 于玉斌,杨昌贤,姚秀萍. 2007. 近海热带气旋强度突变的垂直结构特征分析. 大气科学,31(5):876-886 doi: 10.3878/j.issn.1006-9895.2007.05.11

    Yu Y B,Yang C X,Yao X P. 2007. The vertical structure characteristics analysis on abrupt intensity change of tropical cyclone over the offshore of China. Chinese J Atmos Sci,31(5):876-886 (in Chinese) doi: 10.3878/j.issn.1006-9895.2007.05.11
    [11] Chan J C L,Duan Y H,Shay L K. 2001. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J Atmos Sci,58(2):154-172 doi: 10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
    [12] DeMaria M,Kaplan J. 1994. A statistical hurricane intensity prediction scheme (ships) for the Atlantic basin. Wea Forecasting,9(2):209-220 doi: 10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
    [13] Duran P,Molinari J. 2016. Upper-tropospheric low Richardson number in tropical cyclones:Sensitivity to cyclone intensity and the diurnal cycle. J Atmos Sci,73(2):545-554 doi: 10.1175/JAS-D-15-0118.1
    [14] Gray W M. 1968. Global view of the origin of tropical disturbances and storms. Mon Wea Rev,96(10):669-700 doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
    [15] Hanley D,Molinari J,Keyser D. 2001. A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon Wea Rev,129(10):2570-2584 doi: 10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2
    [16] Komaromi W A,Doyle J D. 2017. Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon Wea Rev,145(4):1339-1359 doi: 10.1175/MWR-D-16-0172.1
    [17] Lyu X Y,Wang X G,Leslie L M. 2019. The dependence of northwest pacific tropical cyclone intensification rates on environmental factors. Adv Meteor,2019:9456873
    [18] Merrill R T. 1988. Environmental influences on hurricane intensification. J Atmos Sci,45(11):1678-1687 doi: 10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2
    [19] Molinari J,Vollaro D. 1990. External influences on hurricane intensity. Part Ⅱ:Vertical structure and response of the hurricane vortex. J Atmos Sci,47(15):1902-1918 doi: 10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2
    [20] Wei N,McBride J L,Zhang X H,et al. 2018. Understanding biases in tropical cyclone intensity forecast error. Wea Forecasting,33(1):129-138 doi: 10.1175/WAF-D-17-0106.1
    [21] Ono M, Notsuhara S, Fukuda J, et al. 2019. Operational use of the typhoon intensity forecasting scheme based on SHIPS (TIFS) and commencement of five-day tropical cyclone intensity forecasts. Tokyo: RSMC Tokyo-Typhoon Center, 1-17
    [22] Rappin E D,Morgan M C,Tripoli G J. 2011. The impact of outflow environment on tropical cyclone intensification and structure. J Atmos Sci,68(2):177-194 doi: 10.1175/2009JAS2970.1
    [23] Wu L,Su H,Fovell R G,et al. 2015. Impact of environmental moisture on tropical cyclone intensification. Atmos Chem Phys Discuss,15(24):16111-16139
    [24] Yoshida R,Ishikawa H. 2013. Environmental factors contributing to tropical cyclone genesis over the western north Pacific. Mon Wea Rev,141(2):451-467 doi: 10.1175/MWR-D-11-00309.1
    [25] Zehr R M. 1992. Tropical cyclone genesis in the western North Pacific. Washington: NOAA, 170-181
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  70
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-05-18

目录

    /

    返回文章
    返回