Different ENSO impacts on early and late winter synoptic-scale air temperature variability over eastern China and possible mechanisms
-
摘要: 基于中国国家气象信息中心提供的中国第一代全球大气和陆面再分析产品(CRA)的逐日气温资料、美国国家海洋和大气管理局(NOAA)重建的逐月海表温度资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)提供的大气环流再分析资料,研究了厄尔尼诺-南方涛动(ENSO)对中国东部前、后冬天气尺度气温变率的影响及其物理机制。结果表明,ENSO对中国东部天气尺度气温变率的影响在前、后冬存在显著差异。ENSO对前冬中国东部天气尺度气温变率影响较弱,后冬则显著增强。后冬时期,ENSO与长江中下游地区天气尺度气温变率呈现显著正相关,即厄尔尼诺年后冬天气尺度气温变率增强,气温波动幅度增大;拉尼娜年后冬天气尺度气温变率减弱,气温变化较为平缓。ENSO在后冬可通过影响与欧亚大陆上空南北温度梯度相关的大气斜压性调节下游东亚地区大气环流的天气尺度变率,进而影响天气尺度气温变率。厄尔尼诺年后冬,南北温度梯度大,大气斜压性较强,经向风活跃,冷空气活动较为频繁,天气尺度气温变率增大;拉尼娜年后冬,异常情况与之大致相反。在前冬ENSO对欧亚大陆上空南北梯度即大气斜压性影响较小,因而对中国东部天气尺度气温变率的影响也较弱。本研究的成果丰富了对ENSO影响中国气温变率的理解,有利于中国冬季气温季节预测水平的提升。Abstract: Based on daily mean air temperature data from the first-generation global atmosphere reanalysis product (CRA) of China, the reconstructed monthly sea surface temperature data from National Oceanic and Atmospheric Administration (NOAA), and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) atmospheric circulation reanalysis data, the present study investigates influences of El Niño-Southern Oscillation (ENSO) on the early and late winter synoptic-scale air temperature variability over eastern China and possible mechanisms. It is revealed that the ENSO impacts differ remarkably between early and late winter. That is, the synoptic-scale air temperature response to ENSO over eastern China is weak in early winter but strong in late winter. In late winter, there is a significant positive correlation between ENSO and the synoptic temperature variability in the middle and lower reaches of the Yangtze river of eastern China. It suggests that the synoptic-scale air temperature variability and temperature fluctuation in late winters of El Niño (La Niña) years are usually stronger (weaker) than that in normal years. In late winter, ENSO can modulate the atmospheric baroclinicity by changing the meridional temperature gradient in the middle and high latitudes of Eurasia, which affects the synoptic-scale variation of atmospheric circulation in East Asia and subsequently affects the synoptic-scale air temperature variability over eastern China. Specifically, in late winters of El Niño years, the north-south temperature gradient is larger and the corresponding atmospheric baroclinicity is stronger, which could lead to more active meridional wind activities and more frequent cold air activities. Roughly opposite mechanisms apply during late winters of La Niña years. However, in early winter, ENSO has a weak influence on the meridional temperature gradient in the middle and high latitudes of Eurasia, and thus exhibits minor effects on the synoptic-scale temperature variability over eastern China. The results can enrich our understanding of the ENSO impact on air temperature variability in China, and provide references for improving seasonal prediction of wintertime air temperature over China.
-
Key words:
- ENSO /
- Synoptic-scale air temperature variability /
- Early winter /
- Late winter
-
图 1 中国东部地区 (20°—45°N,110°—120°E)区域平均的冬季天气尺度气温变率与同期海温相关系数空间分布 (黑点表示通过90%信度的检验)
Figure 1. Spatial distribution of the correlation coefficient between sea surface temperature anomalies and the area-averaged winter synoptic-scale air temperature variability over eastern China(20°—45°N,110°—120°E)(black dots indi cate values exceeding the 90% confidence level)
图 3 前 (a)、后 (b) 冬ENSO冷、暖位相下天气尺度气温变率的异常合成差值场 (厄尔尼诺减去拉尼娜)(单位:(℃)²,黑点区表示通过90%信度检验)
Figure 3. Differences between composite anomalies of synoptic-scale air temperature variability during (a) early winters and (b) late winters of El Niño and La Niña years (El Niño minus La Niña) (unit: (℃)²,black dots indicate values exceeding the 90% confidence level)
图 5 前 (a)、后 (b) 冬时期Nino3.4指数回归的中国东部地区500 hPa天气尺度经向风变率异常 (单位:(m/s)²,黑点区表示通过90%信度检验)
Figure 5. 500 hPa synoptic-scale meridional wind variability anomalies regressed onto the winter Nino3.4 index over eastern China during (a) early winter and (b) late winter (unit:(m/s)²,black dots indicate values exceeding the 90% confidence level)
图 6 前 (a)、后 (b) 冬Nino3.4指数回归的200 hPa天气尺度位势高度变率异常 (单位:dagpm²,黑点区表示通过90%信度检验)
Figure 6. 200 hPa synoptic-scale geopotential height variance anomalies regrssed onto the winter Nino3.4 index during (a) early winter and (b) late winter (unit:dagpm²,black dots indicate values exceeding the 90% confidence level)
图 7 Nino3.4指数回归的前 (a)、后 (b) 冬欧亚大陆 (80°—110°E) 纬向平均的温度异常 (单位:℃,黑点区表示通过90%信度检验)
Figure 7. Zonal mean temperature anomalies (80°—110°E) regressed onto the winter Nino3.4 index over Eurasia during (a) early winter and (b) late winter (unit:℃, black dots indicate values exceeding the 90% confidence level)
-
[1] 陈冰,梁越,马路金等. 2013. 影响化州的寒潮强冷空气特征及其与ENSO事件的关系. 气象研究与应用,34(4):18-21Chen B,Liang Y,Ma L J,et al. 2013. Characteristics of cold wave strong air and its relationship with ENSO events in Huazhou. J Meteor Res Appl,34(4):18-21 (in Chinese) [2] 丁一汇. 1990. 东亚冬季风的统计研究. 热带气象,6(2):119-128Ding Y H. 1990. A statistical study of winter monsoons in East Asia. J Trop Meteor,6(2):119-128 (in Chinese) [3] 黄嘉佑,胡永云. 2006. 中国冬季气温变化的趋向性研究. 气象学报,64(5):614-621 doi: 10.3321/j.issn:0577-6619.2006.05.008Huang J Y,Hu Y Y. 2006. Trends of winter temperatures in China. Acta Meteor Sinica,64(5):614-621 (in Chinese) doi: 10.3321/j.issn:0577-6619.2006.05.008 [4] 贾丹,简茂球. 2015. 中国冬季月地面气温的年际变化. 气候与环境研究,20(4):454-464Jia D,Jian M Q. 2015. Interannual variability of wintertime monthly surface air temperature in China. Climatic Environ Res,20(4):454-464 (in Chinese) [5] 康丽华,陈文,魏科. 2006. 我国冬季气温年代际变化及其与大气环流异常变化的关系. 气候与环境研究,11(3):330-339 doi: 10.3878/j.issn.1006-9585.2006.03.09Kang L H,Chen W,Wei K. 2006. The interdecadal variation of winter temperature in China and its relation to the anomalies in atmospheric general circulation. Climatic Environ Res,11(3):330-339 (in Chinese) doi: 10.3878/j.issn.1006-9585.2006.03.09 [6] 康丽华,陈文,王林等. 2009. 我国冬季气温的年际变化及其与大气环流和海温异常的关系. 气候与环境研究,14(1):45-53Kang L H,Chen W,Wang L,et al. 2009. Interannual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature. Climatic Environ Res,14(1):45-53 (in Chinese) [7] 李崇银. 1989. El Niño事件与中国东部气温异常. 热带气象,5(3):210-219Li C Y. 1989. El Niño event and the temperature anomalies in eastern China. J Trop Meteor,5(3):210-219 (in Chinese) [8] 李一玲,王澄海,张飞民. 2018. 欧亚大陆冬季地表温度南北反相变化的年代际特征及机理. 气候与环境研究,23(2):161-175 doi: 10.3878/j.issn.1006-9585.2017.17059Li Y L,Wang C H,Zhang F M. 2018. Interdecadal variations and mechanisms of the seesaw pattern for winter surface temperature between northern and southern Eurasia. Climatic Environ Res,23(2):161-175 (in Chinese) doi: 10.3878/j.issn.1006-9585.2017.17059 [9] 马阳,朱伟军,李天宇等. 2017. 西伯利亚风暴轴的气候特征及其可能维持机制. 气象科学,37(5):587-597Ma Y,Zhu W J,Li T Y,et al. 2017. The climatic characteristics of Siberian storm track and its possible maintenance mechanism. J Meteor Sci,37(5):587-597 (in Chinese) [10] 任曼琳,张文君,耿新等. 2020. ENSO对中国冬季天气尺度气温变率的影响及可能机理. 气象学报,78(2):199-209Ren M L,Zhang W J,Geng X,et al. 2020. ENSO impact on the variability of wintertime synoptic-scale air temperature over China and possible mechanisms behind. Acta Meteor Sinica,78(2):199-209 (in Chinese) [11] 王会军,贺圣平. 2012. ENSO和东亚冬季风之关系在20世纪70年代中期之后的减弱. 科学通报,57(19):1713-1718. Wang H J,He S P. 2012. Weakening relationship between East Asian Winter Monsoon and ENSO after mid-1970s. Chinese Sci Bull,57(27):3535-3540. [12] 韦玮,王林,陈权亮等. 2014. 我国前冬和后冬气温年际变化的特征与联系. 大气科学,38(3):524-536 doi: 10.3878/j.issn.1006-9895.1401.13320Wei W,Wang L,Chen Q L,et al. 2014. Interannual variations of early and late winter temperatures in China and their linkage. Chinese J Atmos Sci,38(3):524-536 (in Chinese) doi: 10.3878/j.issn.1006-9895.1401.13320 [13] 叶更新,王智宇. 2010. 冬季寒潮爆发频数与ENSO的联系. 吉林气象,(2):2-7Ye G X,Wang Z Y. 2010. The relationship between winter cold wave frequency and ENSO. Jilin Meteor,(2):2-7 (in Chinese) [14] 曾琮,谢炯光. 2003. 广东省寒潮、强冷空气的气候特征及与ENSO的关系. 广东气象,(1):7-9 doi: 10.3969/j.issn.1007-6190.2003.01.003Zeng C,Xie J G. 2003. The relation between ENSO and cold wave & strong cold air in Guangdong. Guangdong Meteor,(1):7-9 (in Chinese) doi: 10.3969/j.issn.1007-6190.2003.01.003 [15] Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev,97(3):163-172 doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 [16] Blackmon M L,Wallace J M,Lau N C,et al. 1977. An observational study of the northern Hemisphere wintertime circulation. J Atmos Sci,34(7):1040-1053 doi: 10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2 [17] Chang E K M,Lee S,Swanson K L. 2002. Storm track dynamics. J Climate,15(16):2163-2183 doi: 10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2 [18] Chen T C,Huang W R,Yoon J H. 2004. Interannual variation of the East Asian cold surge activity. J Climate,17(2):401-413 doi: 10.1175/1520-0442(2004)017<0401:IVOTEA>2.0.CO;2 [19] Chen W,Graf H F,Huang R H. 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci,17(1):48-60 doi: 10.1007/s00376-000-0042-5 [20] Geng X,Zhang W J,Stuecker M F,et al. 2017a. Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Climate Dyn,49(7-8):2531-2544 doi: 10.1007/s00382-016-3465-0 [21] Geng X,Zhang W J,Stuecker M F,et al. 2017b. Strong sub-seasonal wintertime cooling over East Asia and northern Europe associated with super El Niño events. Sci Rep,7(1):3770 doi: 10.1038/s41598-017-03977-2 [22] Geng X,Zhang W J,Jin F F,et al. 2018. A new method for interpreting nonstationary running correlations and its application to the ENSO-EAWM relationship. Geophys Res Lett,45(1):327-334 doi: 10.1002/2017GL076564 [23] Gill E C,Rajagopalan B,Molnar P. 2015. Subseasonal variations in spatial signatures of ENSO on the Indian summer monsoon from 1901 to 2009. J Geophys Res:Atmos,120(16):8165-8185 doi: 10.1002/2015JD023184 [24] He S P,Wang H J. 2013. Oscillating relationship between the East Asian winter monsoon and ENSO. J Climate,26(24):9819-9838 doi: 10.1175/JCLI-D-13-00174.1 [25] Hoskins B J,Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci,38(6):1179-1196 doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 [26] Hu Y Y,Tung K K,Liu J P. 2005. A closer comparison of early and late-winter atmospheric trends in the Northern Hemisphere. J Climate,18(16):3204-3216 doi: 10.1175/JCLI3468.1 [27] Huang R H,Wu Y F. 1989. The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci,6(1):21-32 doi: 10.1007/BF02656915 [28] Huang R H,Chen J L,Wang L,et al. 2012. Characteristics,processes,and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv Atmos Sci,29(5):910-942 doi: 10.1007/s00376-012-2015-x [29] Kao H Y,Yu J Y. 2009. Contrasting eastern-pacific and central-pacific types of Enso. J Climate,22(3):615-632 doi: 10.1175/2008JCLI2309.1 [30] Kim S,Son H Y,Kug J S. 2018. Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific. Climate Dyn,51(11-12):4345-4355 doi: 10.1007/s00382-017-3779-6 [31] Kug J S,Jin F F,An S I. 2009. Two types of El Niño events:Cold tongue El Niño and warm pool El Niño. J Climate,22(6):1499-1515 doi: 10.1175/2008JCLI2624.1 [32] Latif M,Anderson D,Barnett T,et al. 1998. A review of the predictability and prediction of ENSO. J Geophys Res:Oceans,103(C7):14375-14393 doi: 10.1029/97JC03413 [33] Lau N C. 1978. On the three-dimensional structure of the observed transient eddy statistics of the Northern Hemisphere wintertime circulation. J Atmos Sci,35(10):1900-1923 doi: 10.1175/1520-0469(1978)035<1900:OTTDSO>2.0.CO;2 [34] Li C,Ma H. 2012. Relationship between ENSO and winter rainfall over southeast China and its decadal variability. Adv Atmos Sci,29(6):1129-1141 doi: 10.1007/s00376-012-1248-z [35] Li C Y. 1990. Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv Atmos Sci,7(1):36-46 doi: 10.1007/BF02919166 [36] Liess S,Agrawal S,Chatterjee S,et al. 2017. A teleconnection between the West Siberian Plain and the ENSO region. J Climate,30(1):301-315 doi: 10.1175/JCLI-D-15-0884.1 [37] Livezey R E,Masutani M,Leetmaa A,et al. 1997. Teleconnective response of the Pacific—North American region atmosphere to large central equatorial pacific SST anomalies. J Climate,10(8):1787-1820 doi: 10.1175/1520-0442(1997)010<1787:TROTPN>2.0.CO;2 [38] Ma T J,Chen W,Chen S F,et al. 2022. Different ENSO teleconnections over East Asia in early and late winter:Role of precipitation anomalies in the tropical Indian ocean and far western Pacific. J Climate,35(24):7919-7935 doi: 10.1175/JCLI-D-21-0805.1 [39] Mariotti A,Zeng N,Lau K M. 2002. Euro-Mediterranean rainfall and ENSO:A seasonally varying relationship. Geophys Res Lett,29(12):1621 doi: 10.1029/2001GL014248 [40] McPhaden M J,Zebiak S E,Glantz M H. 2006. ENSO as an integrating concept in earth science. Science,314(5806):1740-1745 doi: 10.1126/science.1132588 [41] Moron V,Gouirand I. 2003. Seasonal modulation of the El Niño-southern oscillation relationship with sea level pressure anomalies over the North Atlantic in October—March 1873—1996. Int J Climatol,23(2):143-155 doi: 10.1002/joc.868 [42] Peng J B,Cholaw B. 2011. The definition and classification of extensive and persistent extreme cold events in China. Atmos Oceanic Sci Lett,4(5):281-286 doi: 10.1080/16742834.2011.11446943 [43] Ren H L,Lu B,Wan J H,et al. 2018. Identification standard for ENSO events and its application to climate monitoring and prediction in China. J Meteor Res,32(6):923-936 doi: 10.1007/s13351-018-8078-6 [44] Trenberth K E,Hurrell J W. 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dyn,9(6):303-319 doi: 10.1007/BF00204745 [45] Trenberth K E,Caron J M. 2000. The Southern Oscillation revisited:Sea level pressures,surface temperatures,and precipitation. J Climate,13(24):4358-4365 doi: 10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2 [46] Wallace J M,Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev,109(4):784-812 doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 [47] Wallace J M,Rasmusson E M,Mitchell T P,et al. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific:Lessons from TOGA. J Geophys Res:Oceans,103(C7):14241-14259 doi: 10.1029/97JC02905 [48] Wang B,Wu R G,Fu X. 2000. Pacific-East Asian teleconnection:How does ENSO affect east Asian climate?. J Climate,13(9):1517-1536 doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 [49] Wang B,Zhang Q. 2002. Pacific-East Asian teleconnection. Part Ⅱ:How the Philippine sea anomalous anticyclone is established during El Niño development. J Climate,15(22):3252-3265 doi: 10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2 [50] Wang B,Wu R G,Li T. 2003. Atmosphere-Warm Ocean interaction and its impacts on Asian-Australian monsoon variation. J Climate,16(8):1195-1211 doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2 [51] Wang B,Wu Z W,Chang C P,et al. 2010. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon:The northern and southern temperature modes. J Climate,23(6):1495-1512 doi: 10.1175/2009JCLI3243.1 [52] Wu R G,Hu Z Z,Kirtman B P. 2003. Evolution of ENSO-related rainfall anomalies in East Asia. J Climate,16(22):3742-3758 doi: 10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2 [53] Yeh S W,Kug J S,Dewitte B,et al. 2009. El Niño in a changing climate. Nature,461(7263):511-514 doi: 10.1038/nature08316 [54] Zhang R H,Sumi A,Kimoto M. 1996. Impact of El Niño on the East Asian monsoon:A diagnostic study of the '86/87 and '91/92 events. J Meteor Soc Japan,74(1):49-62 doi: 10.2151/jmsj1965.74.1_49 [55] Zhang W J,Jin F F,Li J P,et al. 2011. Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J Meteor Soc Japan,89(5):563-569 doi: 10.2151/jmsj.2011-510 [56] Zhang W J,Jin F F,Ren H L,et al. 2012. Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J Meteor Soc Japan,90(4):535-552 doi: 10.2151/jmsj.2012-407 [57] Zhang W J,Jin F F,Zhao J X,et al. 2013. The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J Climate,26(21):8392-8405 doi: 10.1175/JCLI-D-12-00851.1 [58] Zhang W J,Wang L,Xiang B Q,et al. 2015a. Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn,44(5-6):1351-1366 doi: 10.1007/s00382-014-2155-z [59] Zhang W J,Wang Y L,Jin F F,et al. 2015b. Impact of different El Niño types on the El Niño/IOD relationship. Geophys Res Lett,42(20):8570-8576 doi: 10.1002/2015GL065703 [60] Zhang Y Q,Held I M. 1999. A linear stochastic model of a GCM's Midlatitude storm tracks. J Atmos Sci,56(19):3416-3435 doi: 10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2 [61] Zhou W,Wang X,Zhou T J,et al. 2007. Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor Atmos Phys,98(3-4):283-293 doi: 10.1007/s00703-007-0263-6 -