留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率地形资料应用对CMA-MESO模式地面气象要素的影响

陈冬梅 马玉龙 李源 冯家莉 高彦 尹鹏帅 夏昕 万齐林

陈冬梅,马玉龙,李源,冯家莉,高彦,尹鹏帅,夏昕,万齐林. 2023. 高分辨率地形资料应用对CMA-MESO模式地面气象要素的影响. 气象学报,81(6):1-14 doi: 10.11676/qxxb2023.20230010
引用本文: 陈冬梅,马玉龙,李源,冯家莉,高彦,尹鹏帅,夏昕,万齐林. 2023. 高分辨率地形资料应用对CMA-MESO模式地面气象要素的影响. 气象学报,81(6):1-14 doi: 10.11676/qxxb2023.20230010
Chen Dongmei, Ma Yulong, Li Yuan, Feng Jiali, Gao Yan, Yin Pengshuai, Xia Xin, Wan Qilin. 2023. The impact of high-resolution orography data on the CMA-MESO model prediction of ground meteorological elements. Acta Meteorologica Sinica, 81(6):1-14 doi: 10.11676/qxxb2023.20230010
Citation: Chen Dongmei, Ma Yulong, Li Yuan, Feng Jiali, Gao Yan, Yin Pengshuai, Xia Xin, Wan Qilin. 2023. The impact of high-resolution orography data on the CMA-MESO model prediction of ground meteorological elements. Acta Meteorologica Sinica, 81(6):1-14 doi: 10.11676/qxxb2023.20230010

高分辨率地形资料应用对CMA-MESO模式地面气象要素的影响

doi: 10.11676/qxxb2023.20230010
基金项目: 国家重点研发计划项目(2021YFC3000804)、广东省基础与应用基础研究基金联合基金(粤深联合基金)青年基金项目( 2022A1515110841)。
详细信息
    作者简介:

    陈冬梅,主要从事数值天气预报研究。E-mail:chendongmei@gbamwf.com

    通讯作者:

    万齐林,主要从事数值天气预报研究。E-mail:wanqilin@gbamwf.com

  • 中图分类号: P435

The impact of high-resolution orography data on the CMA-MESO model prediction of ground meteorological elements

  • 摘要: 真实地形包含各自不同尺度的地形特征,对各种时空大气运动有深刻影响。不同尺度的地形效应很难在数值模式的离散格点中准确刻画,是发展数值模式的难点问题之一。随着模式向亚千米级高分辨率发展,高分辨模式要求刻画出更高准确度的地形数据。本研究在CMA-MESO中引入ASTER-1s高精度地形数据和改进地形滤波函数,在滤去波长接近模式网格的小尺度地形的同时保留更多地形细节,以提高模式对地形的刻画准确度。通过冬、夏各1个月批量模拟试验结果与2万多个地面观测站点观测数据的对比,发现单独采用ASTER-1s地形而不改变CMA-MESO的地形滤波函数,模式对2 m气温和10 m风速的整体预报准确度提升较小,采用ASTER-1s地形并改进地形滤波函数明显提高了模式对2 m气温和10 m风速的预报准确度,对气温和风速的月平均均方根误差提升分别为6.4%和4.9%。夏季1个月批量试验显示,改进的新地形方案对降水预报提升较弱,未造成非真实的细碎降水分布或异常值。此外,动能谱分析新引入的地形和滤波函数未造成高频能量积累。研究结果表明新地形方案能够明显改进低层气温和风速的预报准确度,并且在数值上稳定可靠。

     

  • 图 1  (a) 模式格点上ASTER-1s和 GTOPO30地形高度差 (ASTER-1s地形经网格平均到模式格点,GTOPO30经插值到模式格点,均未做地形滤波);(b) 模式网格上两种地形高度的散点图

    Figure 1.  (a) Orography height difference between ASTER-1s and GTOPO30 on the model grids (no terrain filter is applied); (b) scatterplot of different orography data on the model grids

    图 2  (a) Zadra地形滤波函数不同参数$ {r}_{c} $p下的振幅响应函数;(b) 不同滤波函数下的地形谱分布 (30s_RAW和1s_RAW分别为GTOPO30和ASTER-1s地形未做滤波处理,30s_CMA_SMTH和1s_CMA_SMTH分别为GTOPO30和ASTER-1s地形采用CMA-MESO滤波函数,1s_new_SMTH1和1s_new_SMTH2为ASTER-1s地形分别采用不同参数的Zadra 滤波函数,该谱分布为模式网格上地形在东西方向做傅里叶变换并在南北方向平均得到)

    Figure 2.  (a) Amplitude response functions of the Zadra-filter with different filter parameters $ {r}_{c} $ and p;(b) Power spectra of the orography field on CMA-MESO model grids with different filters (30s_RAW and 1s_RAW represent the spectra without filter for the GTOPO30 and ASTER-1s orography data respectively,30s_CMA_SMTH and 1s_CMA_SMTH represent the spectra with CMA-MESO filter for the GTOPO30 and ASTER-1s orography data respectively,1s_new_SMTH1 and 1s_new_SMTH2 represent the spectra with Zadra-filter for the ASTER-1s orography data)

    图 3  模拟区域的地形及站点分布 (红点)

    Figure 3.  Simulation domain and locations of observation sites (marked by red dots)

    图 4  不同模拟试验 2 m气温差异的月平均分布 (左列为2020年6月,右列为2020年12月;a、b. 30s_CMA_SMTH与站点观测之差;c、d. 1s_CMA_SMTH 与 30s_CMA_SMTH 之差;e、f. 1s_new_SMTH1与30s_CMA_SMTH之差;g、h. 1s_new_SMTH1与1s_new_SMTH2之差)

    Figure 4.  Differences in monthly mean temperature at 2 m above ground level between observations and simulations (left panel for June 2020 and right panel for December 2020;a,b. temperature differences between 30s_CMA_SMTH and observations;c,d. temperature differences between 1s_CMA_SMTH and 30s_CMA_SMTH;e,f. temperature differences between 1s_new_SMTH1 and 30s_CMA_SMTH;g,h. temperature differences between 1s_new_SMTH1 and 1s_new_SMTH2)

    图 5  四组试验月平均2 m气温的均方根误差 (a、b) 及偏差 (c、d) (左列为2020年6月平均,右列为2020年12月平均)

    Figure 5.  (a,b) Root-mean-square errors of monthly mean temperature at 2 m above ground level from the four cases;(c,d) biases for monthly mean temperature at 2 m above ground level from the four cases (Left panel for June 2020 and right panel for December 2020)

    图 6  图4,但为10 m风速

    Figure 6.  Same as Fig. 4 but for wind speed at 10 m above ground level

    图 7  图5,但为10 m风速

    Figure 7.  Same as Fig. 5 but for wind speed at 10 m above ground level

    图 8  四组试验2020年6月平均降水分布 (单位:mm/d;a. 30s_CMA_SMTH,b. 1s_CMA_SMTH,c. 1s_new_SMTH1,d. 1s_new_SMTH2)

    Figure 8.  Monthly mean precipitation for four cases (unit:mm/d; a. 30s_CMA_SMTH,b. 1s_CMA_SMTH,c. 1s_new_SMTH1,d. 1s_new_SMTH2)

    图 9  四组试验的2020年6月降水ETS评分

    Figure 9.  Equitable threat scores (ETS) of precipitation for the four cases in June 2020

    图 10  四组试验850 hPa等压面动能的能谱

    Figure 10.  Energy spectra of kinetic energy at 850 hPa for the four cases

    表  1  模式试验设计

    Table  1.   List of simulation cases

    试验名 地形数据 滤波函数
    30s_CMA_SMTH GTOPO30 原CMA-MSEO滤波函数
    1s_CMA_SMTH ASTER-1s 原CMA-MSEO滤波函数
    1s_new_SMTH1 ASTER-1s Zadra滤波函数($ {r}_{c} $=3,p=5)
    1s_new_SMTH2 ASTER-1s Zadra滤波函数($ {r}_{c} $=5,p=10)
    下载: 导出CSV

    表  2  四组数值试验对2020年6和12月2 m气温和10 m风速预报的偏差和均方根误差

    Table  2.   Biases and RMSEs of simulated 2 m temperature and 10 m wind speed for the four cases inJune 2020 and December 2020

    试验名 2 m气温偏差(K) 2 m气温均方根误差(K) 10 m风速偏差(m/s) 10 m风速均方根误差(m/s)
    6月 12月 6月 12月 6月 12月 6月 12月
    30s_CMA_SMTH −0.75 −0.73 1.75 1.85 3.35 3.19 3.95 4.02
    1s_CMA_SMTH −0.75 −0.73 1.75 1.86 3.36 3.21 3.96 4.03
    1s_new_SMTH1 −0.54 −0.49 1.62 1.75 3.14 2.96 3.77 3.81
    1s_new_SMTH2 −0.68 −0.65 1.70 1.80 3.29 3.13 3.90 3.96
    下载: 导出CSV
  • [1] 陈良吕,夏宇,庄潇然. 2020. WRF模式不同地形平滑方案对降水预报的影响. 气象科技,48(5):664-674. Chen L L,Xia Y,Zhuang X R. 2020. Influence of different terrain smoothing schemes in WRF model on precipitation forecast. Meteor Sci Technol,48(5):664-674 (in Chinese

    Chen L L, Xia Y, Zhuang X R. 2020. Influence of different terrain smoothing schemes in WRF model on precipitation forecast. Meteor Sci Technol, 485): 664-674 (in Chinese)
    [2] 方精云. 1992. 我国气温直减率分布规律的研究. 科学通报,37(9):817-820. Fang J Y. 1992. Study on the distribution pattern of air temperature decrease rate in China. Chinese Sci Bull,37(9):817-820 (in Chinese doi: 10.1360/csb1992-37-9-817

    Fang J Y. 1992. Study on the distribution pattern of air temperature decrease rate in China. Chinese Sci Bull, 379): 817-820 (in Chinese) doi: 10.1360/csb1992-37-9-817
    [3] 何光碧. 2021. 数值模式地形处理方法与地形降水影响模拟研究回顾. 高原山地气象研究,41(3):1-8. He G B. 2021. Review of studies on terrain disposing methods in numerical models and precipitation simulation of orographic effect. Plateau Mountain Meteor Res,41(3):1-8 (in Chinese

    He G B. 2021. Review of studies on terrain disposing methods in numerical models and precipitation simulation of orographic effect. Plateau Mountain Meteor Res, 413): 1-8 (in Chinese)
    [4] 李艺苑,王东海,王斌. 2009. 中小尺度过山气流的动力问题研究. 自然科学进展,19(3):310-324. Li Y W,Wang D H,Wang B. 2009. A review of the dynamics of air flow over mountains in medium and small scale. Prog Natl Sci,19(3):310-324 (in Chinese

    Li Y W, Wang D H, Wang B. 2009. A review of the dynamics of air flow over mountains in medium and small scale. Prog Natl Sci, 193): 310-324 (in Chinese)
    [5] 刘一,陈德辉,胡江林等. 2011. GRAPES中尺度模式地形有效尺度影响的理想数值试验研究. 热带气象学报,27(1):53-62. Liu Y,Chen D H,Hu J L,et al. 2011. An impact study of the orographic effective scales for GRAPES_MESO model with idealized numerical simulations. J Trop Meteor,27(1):53-62 (in Chinese

    Liu Y, Chen D H, Hu J L, et al. 2011. An impact study of the orographic effective scales for GRAPES_MESO model with idealized numerical simulations. J Trop Meteor, 271): 53-62 (in Chinese)
    [6] 屠妮妮,陈静,何光碧. 2012. 切比雪夫多项式在模式地形平滑中的应用研究. 高原气象,31(1):47-56. Tu N N,Chen J,He G B. 2012. Research on application of Chebyshev polynomial filtering method in smooth topography of GRAPES model. Plateau Meteor,31(1):47-56 (in Chinese

    Tu N N, Chen J, He G B. 2012. Research on application of Chebyshev polynomial filtering method in smooth topography of GRAPES model. Plateau Meteor, 311): 47-56 (in Chinese)
    [7] 王光辉,陈峰峰,沈学顺等. 2008. 数值模式中地形滤波处理及水平扩散对降雨预报的影响. 地球物理学报,51(6):1642-1650. Wang G H,Chen F F,Shen X S,et al. 2008. The impact of topography filter processing and horizontal diffusion on precipitation prediction in numerical model. Chinese J Geophys,51(6):1642-1650 (in Chinese

    Wang G H, Chen F F, Shen X S, et al. 2008. The impact of topography filter processing and horizontal diffusion on precipitation prediction in numerical model. Chinese J Geophys, 516): 1642-1650 (in Chinese)
    [8] 钟水新. 2020. 地形对降水的影响机理及预报方法研究进展. 高原气象,39(5):1122-1132. Zhong S X. 2020. Advances in the study of the influencing mechanism and forecast methods for orographic precipitation. Plateau Meteor,39(5):1122-1132 (in Chinese

    Zhong S X. 2020. Advances in the study of the influencing mechanism and forecast methods for orographic precipitation. Plateau Meteor, 395): 1122-1132 (in Chinese)
    [9] 朱文达,陈子通,张艳霞等. 2019. 高分辨地形对华南区域GRAPES模式地面要素预报影响的研究. 热带气象学报,35(6):801-811. Zhu W D,Chen Z T,Zhang Y X,et al. 2019. The Impact of high resolution terrain on the prediction of ground elements from Grapes model in south China. J Trop Meteor,35(6):801-811 (in Chinese

    Zhu W D, Chen Z T, Zhang Y X, et al. 2019. The Impact of high resolution terrain on the prediction of ground elements from Grapes model in south China. J Trop Meteor, 356): 801-811 (in Chinese)
    [10] Beljaars A C M,Brown A R,Wood N. 2004. A new parametrization of turbulent orographic form drag. Quart J Roy Meteor Soc,130(599):1327-1347 doi: 10.1256/qj.03.73
    [11] Caccamo M T,Castorina G,Colombo F,et al. 2017. Weather forecast performances for complex orographic areas:Impact of different grid resolutions and of geographic data on heavy rainfall event simulations in Sicily. Atmos Res,198:22-33 doi: 10.1016/j.atmosres.2017.07.028
    [12] Danielson J J,Gesch D B. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). Washington:US Department of the Interior,US Geological Survey,26pp
    [13] Davini P,Fabiano F,Sandu I. 2022. Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes. Wea Climate Dyn,3(2):535-553 doi: 10.5194/wcd-3-535-2022
    [14] ECMWF. 2016. IFS documentation Cy41r2—Part Ⅳ:physical processes. Reading,UK:European Centre for Medium-Range Weather Forecasts.https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes
    [15] Elvidge A D,Sandu I,Wedi N,et al. 2019. Uncertainty in the representation of orography in weather and climate models and implications for parameterized drag. J Adv Model Earth Syst,11(8):2567-2585 doi: 10.1029/2019MS001661
    [16] Farr T G,Rosen P A,Caro E,et al. 2007. The shuttle radar topography mission. Rev Geophys,45(2):RG2004
    [17] Guo Y R,Chen S. 1994. Terrain and land use for the fifth-generation Penn State/NCAR mesoscale modeling system (MM5):Program TERRAIN. Boulder:Mesoscale and Microscale Meteorology Division,National Center for Atmospheric Research
    [18] He J J,Yu Y,Yu L J,et al. 2017. Impacts of uncertainty in land surface information on simulated surface temperature and precipitation over China. Int J Climatol,37(S1):829-847 doi: 10.1002/joc.5041
    [19] Lauritzen P H,Mirin A A,Truesdale J,et al. 2012. Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. Int J High Perform Comput Appl,26(1):63-73 doi: 10.1177/1094342011410088
    [20] Lauritzen P H,Bacmeister J T,Callaghan P F,et al. 2015. NCAR_Topo (v1.0):NCAR global model topography generation software for unstructured grids. Geosci Model Dev,8(12):3975-3986 doi: 10.5194/gmd-8-3975-2015
    [21] Lindborg E. 1999. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?. J Fluid Mech,388:259-288 doi: 10.1017/S0022112099004851
    [22] Park S H,Klemp J B,Kim J H. 2019. Hybrid mass coordinate in WRF-ARW and its impact on upper-level turbulence forecasting. Mon Wea Rev,147(3):971-985 doi: 10.1175/MWR-D-18-0334.1
    [23] Sandu I,van Niekerk A,Shepherd T G,et al. 2019. Impacts of orography on large-scale atmospheric circulation. npj Clim Atmos Sci,2(1):10 doi: 10.1038/s41612-019-0065-9
    [24] Skamarock W C. 2004. Evaluating mesoscale NWP models using kinetic energy spectra. Mon Wea Rev,132(12):3019-3032 doi: 10.1175/MWR2830.1
    [25] Skamarock W C,Klemp J B,Dudhia J,et al. 2019. A description of the advanced research WRF model version 4. Boulder:National Center for Atmospheric Research,53-62
    [26] Tung K K,Orlando W W. 2003. The k−3 and k−5/3 energy spectrum of atmospheric turbulence:Quasigeostrophic two-level model simulation. J Atmos Sci,60(6):824-835 doi: 10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2
    [27] Wang Y J,Wu J P. 2022. Overview of the application of orographic data in numerical weather prediction in complex orographic areas. Adv Meteor,2022:1279625
    [28] Webster S,Brown A R,Cameron D R,et al. 2003. Improvements to the representation of orography in the Met Office Unified Model. Quart J Roy Meteor Soc,129(591):1989-2010 doi: 10.1256/qj.02.133
    [29] Xue H L,Zhou X,Luo Y L,et al. 2021. Impact of parameterizing the turbulent orographic form drag on convection-permitting simulations of winds and precipitation over South China during the 2019 pre-summer rainy season. Atmos Res,263:105814 doi: 10.1016/j.atmosres.2021.105814
    [30] Zadra A. 2018. Notes on the new low-pass filter for the orography field. Internal Report,RPN-A,Gatineau:Meteorological Research Division,Environment and Climate Change Canada. https://collaboration.cmc.ec.gc.ca/science/rpn/drag_project/documents/topo_lowpass_filter.pdf
    [31] Zhong S X,Chen Z T. 2015. Improved wind and precipitation forecasts over South China using a modified orographic drag parameterization scheme. J Meteor Res,29(1):132-143 doi: 10.1007/s13351-014-4934-1
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  23
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 录用日期:  2023-10-23
  • 修回日期:  2023-07-06
  • 网络出版日期:  2023-07-06

目录

    /

    返回文章
    返回