Variation of maximum solar radiation in Shanghai Xinzhuang during 2007—2021 and associated circulation backgrounds
-
摘要: 利用2007—2021年上海莘庄太阳能辐射仪(型号:EKO-MS6020)接收到的逐月最大太阳辐射(MSR)资料,以水平0°角辐射仪观测值为参考,分析了0°—25°不同仰角观测的MSR差异,评估了台站观测、欧洲中期天气预报中心(ECMWF)大气再分析(ERA5)资料与太阳能辐射仪观测辐射的差别。在此基础上,讨论了MSR与天气要素的关系及发生的环流背景和天气尺度演变特征。结果显示,上海莘庄的MSR季节波动范围为800—1300 W/m2,峰值和谷值分别出现在5月和12月。观测的最大MSR值接近太阳常数,年际变化幅度约200 W/m2。相对于0°角观测,当太阳能板倾角为5°—20°时,平均每个月MSR可多获得50—250 W/m2辐射,最佳倾角为20°。ERA5相对于观测MSR存在明显低估,年平均低估约200 W/m2。虽然两者的季节变化相关系数高达0.88,但是在空间和时间上存在显著差异,年际变化相关并不显著。针对与MSR时间相差小于3 d的大气环流背景合成,春、夏、秋、冬四季的环流结构存在差异,但总体来看,偏北风加强、云量偏少、温度偏高的天气过程有利于MSR出现。Abstract: Seasonal evolution of maximum solar radiation (MSR) from monthly observations of the solar radiometer (model: EKO-MS602) at 0°—25° angles in Shanghai Xinzhuang is analyzed and the MSR biases of the European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis product during 2007—2021 are evaluated. In addition, linear relationships of MSR with various meteorological variables as well as favorable synoptic circulation backgrounds are revealed. The seasonal fluctuation range of MSR in Shanghai Xinzhuang is 800—1300 W/m2, and the maximum and minimum values appear in May and December, respectively. Results show that monthly MSR is close to the solar constant with an interannual variance of 200 W/m2. When the inclination angle is within 5°—20°, the received monthly radiation is about 50—250 W/m2 more than that with the angle of 0°. The optimal inclination angle is 20°, corresponding to the best income of MSR. The ERA5 atmospheric reanalysis shows a significant underestimation of MSR with an average annual underestimation of nearly 200 W/m2. Although their correlation coefficient is 0.88, it is mainly due to the seasonal cycle. Significant biases of ERA5 appear both in spatial and temporal domains, and their interannual anomalies are not significantly correlated with observations. Based on temporal evolution of synoptic circulation background with a time difference of fewer than 3 d, we find that the synoptic pattern with stronger northerly winds, less cloud cover, and high temperature is generally favorable for MSR, although the circulation structure is different in spring, summer, autumn, and winter.
-
图 9 ERA5的MSR与莘庄观测时间相差小于3 d的环流合成场 (色阶代表总云量 (×10);等值线代表850 hPa温度,单位:℃;矢量箭头为850 hPa风场;a. 春,b. 夏,c. 秋,d. 冬)
Figure 9. Composite circulation from ERA5 corresponding to MSR time difference within 3 d at Xinzhuang (shadings indicate total cloud cover (×10);contours indicate air temperature at 850 hPa,unit:℃;vectors show winds at 850 hPa;a. Spring,b. Summer,c. Autumn,d. Winter)
表 1 不同倾角观测的季节和年平均MSR (单位:W/m2)
Table 1. Seasonal and annual mean values of MSR for observations with different inclination (unit:W/m2)
倾角(°) 春季 夏季 秋季 冬季 年平均 0 1117.79 1182.15 1101.75 776.42 1024.06 5 1176.92 1274.75 1188.13 851.43 1099.92 10 1152.50 1183.22 1163.02 846.60 1066.80 15 1185.52 1170.60 1152.43 930.67 1102.35 20 1194.47 1214.23 1200.23 975.12 1131.90 25 1106.17 1106.51 1142.95 934.02 1064.98 表 2 不同倾角与0°角辐射差及全年累计辐射差 (单位:W/m2)
Table 2. Differences between observations at various inclination angles and 0° in same observation years andaccumulated annual differences (unit:W/m2)
时间 5° 10° 15° 20° 25° 1月 139.22 101.87 161.87 169.67 121.53 2月 81.54 73.49 182.09 126.39 147.15 3月 39.91 34.21 101.16 98.46 62.98 4月 124.49 28.24 51.44 54.09 −0.38 5月 12.99 41.69 50.59 77.49 −97.45 6月 125.98 −7.42 −55.27 −14.32 −120.29 7月 41.18 −51.67 −5.32 60.48 −97.39 8月 110.63 62.28 25.93 50.08 −9.23 9月 54.66 51.36 28.61 83.21 57.58 10月 93.87 70.17 97.52 162.17 75.28 11月 53.60 8.20 151.90 200.85 172.07 12月 32.23 100.48 148.98 225.58 179.21 总计 910.30 512.90 939.50 1294.15 491.06 表 3 ERA5与莘庄观测得到MSR出现时间
Table 3. Comparison of MSR occurrence dates between ERA5 and observations at Xinzhuang
时间 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 2011年 31(21) 24(12) 30(31)* 28(12) 13(30) 3(30) 3(10) 2(3)* 3(25) 8(20) 11(4) 11(27) 2012年 25(30) 19(26) 31(31)* 26(18) 28(22) 13(2) 30(28)* 1(24) 19(1) 1(3)* 4(2)* 31(11) 2013年 28(17) 24(16) 31(2) 26(21) 21(28) 3(5)* 11(19) 8(3) 16(25) 12(9)* 7(17) 2(28) 2014年 22(14) 21(4) 22(23)* 15(8) 28(24) 14(10) 22(9) 4(13) 11(21) 15(9) 3(15) 5(7)* 2015年 23(20)* 19(15) 25(28)* 26(9) 21(26) 6(17) 29(9) 6(7)* 3(5)* 11(14)* 2(6) 17(8) 2016年 25(26)* 27(18) 28(24) 30(18) 18(19)* 14(2) 25(4) 14(8) 3(4)* 2(9) 3(1)* 7(28) 2017年 26(30) 28(7) 27(28)* 28(27)* 27(20) 3(11) 27(5) 3(22) 13(1) 7(9)* 1(4)* 5(9) 2018年 30(26) 26(17) 28(29)* 17(22) 23(8) 1(17) 14(2) 5(27) 5(25) 1(4)* 9(2) 17(14)* 2019年 24(16) 24(26)* 31(22) 15(16)* 21(20)* 3(11) 29(1) 17(24) 18(7) 10(2) 11(6) 3(23) 2020年 31(30)* 22(17) 20(23)* 28(20) 12(22) 30(8) 22(23)* 15(22) 3(13) 13(5) 8(4) 31(1) 2021年 29(12) 21(22)* 28(26)* 29(21) 5(22) 6(16) 15(18)* 9(4) 18(11) 3(9) 8(2) 2(23) 注:*表示两种数据时间相差在3 d内个例。 -
[1] 曹登峰,刘端阳,周彬等. 2015. 太湖北岸太阳辐射的影响因子研究. 气象科学,35(2):167-175. Cao D F,Liu D Y,Zhou B,et al. 2015. Analysis on influential factors of solar radiation in the north shore of Taihu Lake. J Meteor Sci,35(2):167-175 (in Chinese Cao D F, Liu D Y, Zhou B, et al .2015 . Analysis on influential factors of solar radiation in the north shore of Taihu Lake. J Meteor Sci,35 (2 ):167 -175 (in Chinese)[2] 陈渭民,边多,郁凡. 2000. 由卫星资料估算晴空大气太阳直接辐射和散射辐射. 气象学报,58(4):457-469. Chen W M,Bian D,Yu F. 2000. Estimation of solar direct and scattering radiations in a clear sky atmosphere from satellite data. Acta Meteor Sinica,58(4):457-469 (in Chinese doi: 10.3321/j.issn:0577-6619.2000.04.008 Chen W M, Bian D, Yu F .2000 . Estimation of solar direct and scattering radiations in a clear sky atmosphere from satellite data. Acta Meteor Sinica,58 (4 ):457 -469 (in Chinese) doi: 10.3321/j.issn:0577-6619.2000.04.008[3] 韩世涛,刘玉兰,刘娟. 2010. 宁夏太阳能资源评估分析. 干旱区资源与环境,24(8):131-135. Han S T,Liu Y L,Liu J. 2010. Evaluation analysis on solar energy resources in Ningxia. J Arid Land Resour Environ,24(8):131-135 (in Chinese Han S T, Liu Y L, Liu J .2010 . Evaluation analysis on solar energy resources in Ningxia. J Arid Land Resour Environ,24 (8 ):131 -135 (in Chinese)[4] 胡小韦. 2016. 太阳辐射气象站实测数据与NASA数据对比分析—以吐鲁番地区光资源为例. 西北水电,(3):75-78. Hu X W. 2016. Comparison and analysis on data of solar radiation from meteorological station and NASA—with solar resource in Turfan region. Northwest Hydropower,(3):75-78 (in Chinese doi: 10.3969/j.issn.1006-2610.2016.03.021 Hu X W .2016 . Comparison and analysis on data of solar radiation from meteorological station and NASA—with solar resource in Turfan region. Northwest Hydropower, (3 ):75 -78 (in Chinese) doi: 10.3969/j.issn.1006-2610.2016.03.021[5] 梁红,魏科,马骄. 2021. 我国西北大规模太阳能与风能发电场建设产生的可能气候效应. 气候与环境研究,26(2):123-141. Liang H,Wei K,Ma J. 2021. Climate effect assessment of ideal large-scale solar and wind power farms in northwest China. Climatic Environ Res,26(2):123-141 (in Chinese Liang H, Wei K, Ma J .2021 . Climate effect assessment of ideal large-scale solar and wind power farms in northwest China. Climatic Environ Res,26 (2 ):123 -141 (in Chinese)[6] 刘淳,任立清,李学军等. 2021. 1990—2019年中国北方沙区太阳能资源评估. 高原气象,40(5):1213-1223. Liu C,Ren L Q,Li X J,et al. 2021. Evaluation to the solar energy resources in the sandy regions of northern China from 1990 to 2019. Plateau Meteor,40(5):1213-1223 (in Chinese doi: 10.7522/j.issn.1000-0534.2021.00058 Liu C, Ren L Q, Li X J, et al .2021 . Evaluation to the solar energy resources in the sandy regions of northern China from 1990 to 2019. Plateau Meteor,40 (5 ):1213 -1223 (in Chinese) doi: 10.7522/j.issn.1000-0534.2021.00058[7] 刘佳,何清,刘蕊等. 2008. 新疆太阳辐射特征及其太阳能资源状况. 干旱气象,26(4):61-66. Liu J,He Q,Liu R,et al. 2008. Solar radiation character and solar energy resource in Xinjiang. Arid Meteor,26(4):61-66 (in Chinese Liu J, He Q, Liu R, et al .2008 . Solar radiation character and solar energy resource in Xinjiang. Arid Meteor,26 (4 ):61 -66 (in Chinese)[8] 穆海振. 2019. 上海地区风驱雨气候特征分析. 西安建筑科技大学学报(自然科学版),51(1):128-133,139. Mu H Z. 2019. Climatic characteristics of wind driven rain of Shanghai. J Xi'an Univ Arch Technol (Nat Sci Ed),51(1):128-133,139 (in Chinese Mu H Z .2019 . Climatic characteristics of wind driven rain of Shanghai. J Xi'an Univ Arch Technol (Nat Sci Ed),51 (1 ):128 -133, 139 (in Chinese)[9] 王传辉,申彦波,姚锦烽等. 2022. 3种再分析资料在太阳能资源评估中的适用性. 太阳能学报,43(8):164-173. Wang C H,Shen Y B,Yao J F,et al. 2022. Applicability of three reanalysis data in assessment of solar energy resources in China. Acta Energ Sol Sinica,43(8):164-173 (in Chinese Wang C H, Shen Y B, Yao J F, et al .2022 . Applicability of three reanalysis data in assessment of solar energy resources in China. Acta Energ Sol Sinica,43 (8 ):164 -173 (in Chinese)[10] 王丹,盛立芳,石广玉等. 2012. 中国地表太阳辐射再分析数据与观测的比较. 应用气象学报,23(6):729-738. Wang D,Sheng L F,Shi G Y,et al. 2012. Comparison of surface solar radiation reanalysis data and observations over China. J Appl Meteor Sci,23(6):729-738 (in Chinese Wang D, Sheng L F, Shi G Y, et al .2012 . Comparison of surface solar radiation reanalysis data and observations over China. J Appl Meteor Sci,23 (6 ):729 -738 (in Chinese)[11] 王娟敏,孙娴,孙睿等. 2020. 2000—2016年中国再分析辐射资料与观测值对比. 热带气象学报,36(6):734-743. Wang J M,Sun X,Sun R,et al. 2020. Comparison of reanalysis radiation data and observations in China for 2000—2016. J Trop Meteor,36(6):734-743 (in Chinese Wang J M, Sun X, Sun R, et al .2020 . Comparison of reanalysis radiation data and observations in China for 2000—2016. J Trop Meteor,36 (6 ):734 -743 (in Chinese)[12] 王晓梅,张山清,普宗朝等. 2013. 近50年乌鲁木齐市太阳能资源时空变化分析. 气象,39(4):443-452. Wang X M,Zhang S Q,Pu Z C,et al. 2013. Analysis on spatial-temporal variation of solar energy resource in Urumqi City in recent 50 years. Meteor Mon,39(4):443-452 (in Chinese Wang X M, Zhang S Q, Pu Z C, et al .2013 . Analysis on spatial-temporal variation of solar energy resource in Urumqi City in recent 50 years. Meteor Mon,39 (4 ):443 -452 (in Chinese)[13] 魏培培,董广涛,史军等. 2019. 华东地区极端降水动力降尺度模拟及未来预估. 气候与环境研究,24(1):86-104. Wei P P,Dong G T,Shi J,et al. 2019. Dynamical downscaling simulation and projection of extreme precipitation over East China. Climatic Environ Res,24(1):86-104 (in Chinese doi: 10.3878/j.issn.1006-9585.2018.17169 Wei P P, Dong G T, Shi J, et al .2019 . Dynamical downscaling simulation and projection of extreme precipitation over East China. Climatic Environ Res,24 (1 ):86 -104 (in Chinese) doi: 10.3878/j.issn.1006-9585.2018.17169[14] 吴晶璐,吴建秋,黄文彦等. 2021. 近50年华东地区极端气温变化特征. 湖北农业科学,60(S1):96-100,114. Wu J L,Wu J Q,Huang W Y,et al. 2021. Variation characteristics of extreme temperature indexes in east China area in recent 50 years. Hubei Agric Sci,60(S1):96-100,114 (in Chinese doi: 10.14088/j.cnki.issn0439-8114.2021.S1.029 Wu J L, Wu J Q, Huang W Y, et al .2021 . Variation characteristics of extreme temperature indexes in east China area in recent 50 years. Hubei Agric Sci,60 (S1 ):96 -100, 114 (in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2021.S1.029[15] 吴其重,王自发,崔应杰. 2010. 我国近20年太阳辐射时空分布状况模式评估. 应用气象学报,21(3):343-351. Wu Q Z,Wang Z F,Cui Y J. 2010. Evaluating the solar radiation resources of China in recent 20 years by meteorological model. J Appl Meteor Sci,21(3):343-351 (in Chinese doi: 10.3969/j.issn.1001-7313.2010.03.010 Wu Q Z, Wang Z F, Cui Y J .2010 . Evaluating the solar radiation resources of China in recent 20 years by meteorological model. J Appl Meteor Sci,21 (3 ):343 -351 (in Chinese) doi: 10.3969/j.issn.1001-7313.2010.03.010[16] 于贺军. 2006. 气象用太阳赤纬和时差计算方法研究. 气象水文海洋仪器,(3):50-53. Yu H J. 2006. Study on the formula of the solar declination and time difference in meteorology. Meteor Hydrol Mar Instrum,(3):50-53 (in Chinese Yu H J .2006 . Study on the formula of the solar declination and time difference in meteorology. Meteor Hydrol Mar Instrum, (3 ):50 -53 (in Chinese)[17] 张俊兵,沈润平,师春香等. 2021. 中国大陆地区ERA5下行短波辐射数据适用性评估与对比. 地球信息科学学报,23(12):2261-2274. Zhang J B,Shen R P,Shi C X,et al. 2021. Evaluation and comparison of downward solar radiation from new generation atmospheric reanalysis ERA5 across mainland China. J Geo-Inf Sci,23(12):2261-2274 (in Chinese Zhang J B, Shen R P, Shi C X, et al .2021 . Evaluation and comparison of downward solar radiation from new generation atmospheric reanalysis ERA5 across mainland China. J Geo-Inf Sci,23 (12 ):2261 -2274 (in Chinese)[18] 张星星,吕宁,姚凌等. 2018. ECMWF地表太阳辐射数据在我国的误差及成因分析. 地球信息科学学报,20(2):254-267. Zhang X X,Lv N,Yao L,et al. 2018. Error analysis of ECMWF surface solar radiation data in China. J Geo-Inf Sci,20(2):254-267 (in Chinese Zhang X X, Lv N, Yao L, et al .2018 . Error analysis of ECMWF surface solar radiation data in China. J Geo-Inf Sci,20 (2 ):254 -267 (in Chinese)[19] 张艳晴,刘寿东,王咏薇等. 2019. 南京地区太阳能屋顶缓解夏季高温的模拟研究. 气象学报,77(2):358-370. Zhang Y Q,Liu S D,Wang Y W,et al. 2019. Simulation studies for the mitigation of summer urban heat island by rooftop solar photovoltaic deployment in Nanjing area. Acta Meteor Sinica,77(2):358-370 (in Chinese Zhang Y Q, Liu S D, Wang Y W, et al .2019 . Simulation studies for the mitigation of summer urban heat island by rooftop solar photovoltaic deployment in Nanjing area. Acta Meteor Sinica,77 (2 ):358 -370 (in Chinese)[20] 张悦,樊曙先,李皓等. 2016. 气溶胶辐射效应在华东地区一次雾霾过程中的作用. 气象学报,74(3):465-478. Zhang Y,Fan S X,Li H,et al. 2016. Effects of aerosol radiative feedback during a severe smog process over eastern China. Acta Meteor Sinica,74(3):465-478 (in Chinese doi: 10.11676/qxxb2016.028 Zhang Y, Fan S X, Li H, et al .2016 . Effects of aerosol radiative feedback during a severe smog process over eastern China. Acta Meteor Sinica,74 (3 ):465 -478 (in Chinese) doi: 10.11676/qxxb2016.028[21] 章庆. 2017. 光伏电池板不同朝向的最佳安装倾角. 煤气与热力,37(6):4-6. Zhang Q. 2017. Optimum mounting angle of PV panel with different orientations. Gas Heat,37(6):4-6 (in Chinese doi: 10.13608/j.cnki.1000-4416.2017.06.002 Zhang Q .2017 . Optimum mounting angle of PV panel with different orientations. Gas Heat,37 (6 ):4 -6 (in Chinese) doi: 10.13608/j.cnki.1000-4416.2017.06.002[22] 朱思虹,张华,卫晓东等. 2018. 不同污染条件下气溶胶对短波辐射通量影响的模拟研究. 气象学报,76(5):790-802. Zhu S H,Zhang H,Wei X D,et al. 2018. Simulation of aerosol influences on shortwave radiative flux under different pollution conditions. Acta Meteor Sinica,76(5):790-802 (in Chinese Zhu S H, Zhang H, Wei X D, et al .2018 . Simulation of aerosol influences on shortwave radiative flux under different pollution conditions. Acta Meteor Sinica,76 (5 ):790 -802 (in Chinese)[23] Akarslan E,Hocaoglu F O. 2016. A novel adaptive approach for hourly solar radiation forecasting. Renew Energy,87:628-633 doi: 10.1016/j.renene.2015.10.063 [24] Armstrong J H,Kulikowski Ⅱ A J,Philpott S M. 2021. Urban renewable energy and ecosystems:Integrating vegetation with ground-mounted solar arrays increases arthropod abundance of key functional groups. Urban Ecosyst,24(3):621-631 doi: 10.1007/s11252-020-01063-6 [25] Burnett D,Barbour E,Harrison G P. 2014. The UK solar energy resource and the impact of climate change. Renew Energy,71:333-343. doi: 10.1016/j.renene.2014.05.034 [26] Christiansen J. 2022. Global market outlook for solar power 2022—2026. SolarPower Europe [27] Colak M,Yesilbudak M,Bayindir R. 2020. Daily photovoltaic power prediction enhanced by hybrid GWO-MLP,ALO-MLP and WOA-MLP models using meteorological information. Energies,13(4):901 doi: 10.3390/en13040901 [28] Cutforth H W,Judiesch D. 2007. Long-term changes to incoming solar energy on the Canadian Prairie. Agric For Meteor,145(3-4):167-175 doi: 10.1016/j.agrformet.2007.04.011 [29] Feng F,Wang K C. 2021. Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China. Earth Syst Sci Data,13(3):907-922 doi: 10.5194/essd-13-907-2021 [30] Hersbach H,Bell B,Berrisford P,et al. 2023. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [31] Hong S Y,He G Q,Ge W Q,et al. 2019. Annual energy performance simulation of solar chimney in a cold winter and hot summer climate. Build Simul,12(5):847-856 doi: 10.1007/s12273-019-0572-y [32] Kim J G,Kim D H,Yoo W S,et al. 2017. Daily prediction of solar power generation based on weather forecast information in Korea. IET Renewable Power Gener,11(10):1268-1273 doi: 10.1049/iet-rpg.2016.0698 [33] Ma Q,Wang K C,He Y Y,et al. 2022. Homogenized century-long surface incident solar radiation over Japan. Earth Syst Sci Data,14(2):463-477 doi: 10.5194/essd-14-463-2022 [34] Moharil R M,Kulkarni P S. 2010. Reliability analysis of solar photovoltaic system using hourly mean solar radiation data. Sol Energy,84(4):691-702 doi: 10.1016/j.solener.2010.01.022 [35] Oyewola O M,Patchali T E,Ajide O O,et al. 2022. Global solar radiation predictions in Fiji Islands based on empirical models. Alex Eng J,61(11):8555-8571 doi: 10.1016/j.aej.2022.01.065 [36] Shin D,Ha E,Kim T,et al. 2021. Short-term photovoltaic power generation predicting by input/output structure of weather forecast using deep learning. Soft Comput,25(1):771-783 doi: 10.1007/s00500-020-05199-7 [37] Tang J W,Yang K,Qin J,et al. 2019. A 16-year dataset (2000—2015) of high-resolution (3 h,10 km) global surface solar radiation. Earth Syst Sci Data,11(4):1905-1915 doi: 10.5194/essd-11-1905-2019 [38] Visser L,AlSkaif T,Hu J,et al. 2023. On the value of expert knowledge in estimation and forecasting of solar photovoltaic power generation. Sol Energy,251:86-105 doi: 10.1016/j.solener.2023.01.019 [39] Wang Q Y,Zhang H,Yang S,et al. 2021. Potential driving factors on surface solar radiation trends over China in recent years. Remote Sens,13(4):704 doi: 10.3390/rs13040704 [40] Wang Y T,Tan W N. 2020. Application of surface solar radiation estimation model based on CCD/IRS data in ultra-short-term photovoltaic power prediction//Proceedings of 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering. Bangkok:IEEE [41] Zhu H L,Yao J X. 2013. A power prediction method for photovoltaic power station based on neutral network using numerical weather information. Adv Mater Res,724-725:3-9 doi: 10.4028/www.scientific.net/AMR.724-725.3 -