留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对流风暴结构的双偏振雷达ZDR柱识别及应用研究

潘佳文 徐鸣一 吴举秀 吴伟杰 郑秀云 彭婕 韩颂雨

潘佳文,徐鸣一,吴举秀,吴伟杰,郑秀云,彭婕,韩颂雨. 2023. 基于对流风暴结构的双偏振雷达ZDR柱识别及应用研究. 气象学报,81(6):1-15 doi: 10.11676/qxxb2023.20230050
引用本文: 潘佳文,徐鸣一,吴举秀,吴伟杰,郑秀云,彭婕,韩颂雨. 2023. 基于对流风暴结构的双偏振雷达ZDR柱识别及应用研究. 气象学报,81(6):1-15 doi: 10.11676/qxxb2023.20230050
Pan Jiawen, Xu Mingyi, Wu Juxiu, Wu Weijie, Zheng Xiuyun, Peng Jie, Han Songyu. 2023. Identification and application of ZDR column from dual polarization radar based on convective storm structure. Acta Meteorologica Sinica, 81(6):1-15 doi: 10.11676/qxxb2023.20230050
Citation: Pan Jiawen, Xu Mingyi, Wu Juxiu, Wu Weijie, Zheng Xiuyun, Peng Jie, Han Songyu. 2023. Identification and application of ZDR column from dual polarization radar based on convective storm structure. Acta Meteorologica Sinica, 81(6):1-15 doi: 10.11676/qxxb2023.20230050

基于对流风暴结构的双偏振雷达ZDR柱识别及应用研究

doi: 10.11676/qxxb2023.20230050
基金项目: 科技部重点研发计划(2022YFC3004101)、福建省自然科学基金(2022J011080、2022J01443)、山东省自然科学基金(ZR2020MD052)、浙江省自然科学基金(LZJMY23D050006)、厦门市社会发展领域指导性项目(3502Z20214ZD4005)。
详细信息
    作者简介:

    潘佳文,主要从事雷达气象研究。E-mail:358465603@qq.com

    通讯作者:

    徐鸣一,主要从事强对流和临近预警技术。E-mail:104068199@qq.com

  • 中图分类号: P412.25

Identification and application of ZDR column from dual polarization radar based on convective storm structure

  • 摘要: 双偏振雷达观测到的垂直伸展至环境0℃层之上的柱状差分反射率因子增强区(即ZDR≥1 dB),被称为ZDR柱。ZDR柱可以提供对流风暴上升气流的位置和强度信息,是分析对流风暴演变的有力工具。为了实现对ZDR柱的自动识别并提供用于对流风暴预警的诊断信息,基于对流风暴的三维形态特征,使用厦门双偏振雷达观测数据设计了ZDR柱识别算法,并提取ZDR柱形态参数。结合地面观测资料,探索ZDR柱形态参数在对流风暴定量化分析领域的应用。研究表明:(1)强风暴和非强风暴在ZDR柱形态参数上存在统计学上的明显差异,这为预报员据此判别两类对流风暴提供了参考依据。当ZDR柱深度达到1500 m后,至少有60%的雷达体扫个数与强风暴相关。ZDR柱体积、质心高度和最大ZDR值的阈值达到20 m3、500 m和3 dB时,这一比例分别达到70%、70%和50%。(2)ZDR柱的演变可较好地指示对流风暴的发展过程,其形态参数的极值早于强对流天气现象出现。在连续性强对流天气过程中,ZDR柱的再度发展预示着对流风暴的再次增强。(3) ZDR柱对于风暴的合并与分裂过程具有预示性。在风暴合并(分裂)过程中伴有ZDR柱合并(分裂)的现象,其中有57%(69%)的过程ZDR柱提前于对流风暴发生合并(分裂)。(4)ZDR柱的位置与对流风暴的后续传播方向存在相关,可为改善对流风暴移动路径的预测提供参考依据。

     

  • 图 1  厦门S波段双偏振雷达周边强对流天气报告及相关观测仪器分布

    Figure 1.  Distribution of severe convective weather reports by Xiamen S-band dual polarization radar and observation stations

    图 2  ZDR段识别示意

    Figure 2.  Illustration of ZDR segment identification

    图 3  ZDR二维分量识别示意

    Figure 3.  Illustration of 2D ZDR component identification

    图 4  ZDR柱识别示意

    Figure 4.  Illustration of ZDR column identification

    图 5  算法流程

    Figure 5.  Flowchart of the algorithm

    图 6  ZDR柱深度 (a)、体积 (b)、质心高度 (c) 和最大值 (d) 的直方图 (虚线表示第10和第90百分位,并标注相应数值)

    Figure 6.  Histogram of ZDR column depth (a),volume (b),centroid height (c) and maximum value (d) (dotted lines indicate the 10th and 90th percentiles,and the corresponding values are also listed)

    图 7  ZDR柱深度 (a)、体积 (b)、质心高度 (c) 和最大值 (d) 的小提琴图 (图中的蓝 (红) 色区域代表概率密度,其宽度越大则出现的频率越高;图中的箱体为四分位间距框,白色点为中位数)

    Figure 7.  Violin plots of ZDR column depth (a),volume (b), centroid height (c) and maximum value (d) (areas shaded in blue (red) show the probability density, and a greater width indicates a higher frequency of occurrence; boxes in each plot mark the interquartile range, and the white dot denotes the median value)

    图 8  ZDR柱深度 (a)、体积 (b)、质心高度 (c) 和最大值 (d) 取不同阈值时强风暴和非强风暴的占比

    Figure 8.  Percentages of all volume scans that are associated with severe and non-severe storms at various thresholds for ZDR column depth (a),volume (b),centroid height (c) and maximum value (d)

    图 9  ZDR柱深度 (a)、体积 (b)、质心高度 (c) 和最大值 (d) 极值相对于强对流天气报告的提前量 (箱体为四分位间距框,横线为中位数,b中圆圈为离散数据)

    Figure 9.  Lead times of the maximum ZDR column depth (a),volume (b), centroid height (c) and maximum value (d) that occur prior to severe convective weather reports (the boxes mark the interquartile range,and the horizontal line marks the median value, in Fig. b the circles represent discrete data)

    图 10  2019年5月17日 (a) 和6月9日 (b) 厦门双偏振雷达观测到的对流风暴ZDR柱深度时序

    Figure 10.  Time series of ZDR column depth observed by Xiamen dual polarization radar for the convective storms on 17 May (a) and 9 June (b) 2019

    图 11  2018年5月23日15时11分 (a)、15时17分 (b) 和15时23分 (c) 厦门S波段雷达6.0°仰角反射率因子 (a1—c1)、径向速度 (a2—c2) 和差分反射率因子 (a3—c3

    Figure 11.  ZH (a1—c1),Vr (a2—c2) and ZDR (a3—c3) from Xiamen S-band radar taken at 6.0° elevation at 15:11 BT (a),15:17 BT (b) and 15:23 BT (c) 23 May 2018

    图 12  2018年7月31日13时55分 (a)、14时07分 (b) 和14时18分 (c) 厦门双偏振雷达3.4°仰角反射率因子 (a1−c1)、径向速度 (a2—c2) 和差分反射率因子 (a3—c3

    Figure 12.  ZH (a1—c1),Vr (a2—c2) and ZDR (a3—c3) from Xiamen dual-polarization radar taken at 3.4° elevation at 13:55 BT (a),14:07 BT (b) and 14:18 BT (c) 31 July 2018

    图 13  2018年7月31日13时55分 (a)、14时07分 (b) 和14时18分 (c) 沿图12中线段abcdef所做垂直剖面 (a1—c1. 反射率因子,a2—c2. 径向速度,a3—c3. 差分反射率因子)

    Figure 13.  Vertical cross sections along lines "ab","cd" and "ef" shown in Fig. 12 at 13:55 BT (a),14:07 BT (b) and 14:18 BT (c) 31 July 2018 (a1—c1. ZH,a2—c2. Vr,a3—c3. ZDR

    图 14  2019年4月22日 (a) 和2018年5月23日 (b) 厦门双偏振雷达观测的风暴路径和ZDR柱路径 (风暴路径及其预测路径源自SCIT算法)

    Figure 14.  Storm paths and ZDR column paths observed by Xiamen dual-polarization radar on 22 April 2019 (a) and 23 May 2018 (b) (the storm tracks and forecast paths are derived from the SCIT algorithm)

    表  1  各类型风暴数量及其体扫数

    Table  1.   Number of storms and volume scans analyzed for various storm types

    风暴类型 风暴数量(个) 体扫数(个)
    强风暴 30 619
    非强风暴 30 367
    冰雹强风暴 10 231
    雷暴大风强风暴 10 216
    短时强降水强风暴 10 172
    下载: 导出CSV
  • [1] 戴建华. 2013. 长三角地区雷暴发展、演变特征分析与机理研究[D]. 南京:南京大学,260pp. Dai J H. 2013. Study on thunderstorm development and evolution,and its mechanisms in the Yangtze River Delta region[D]. Nanjing:Nanjing University,260pp (in Chinese

    Dai J H. 2013. Study on thunderstorm development and evolution, and its mechanisms in the Yangtze River Delta region[D]. Nanjing: Nanjing University, 260pp (in Chinese)
    [2] 刁秀广,杨传凤,张骞等. 2021. 二次长寿命超级单体风暴参数与 ZDR柱演变特征分析. 高原气象,40(3):580-589. Diao X G,Yang C F,Zhang Q,et al. 2021. Analysis on the evolution characteristics of storm parameters and ZDR column for two long life supercells. Plateau Meteor,40(3):580-589 (in Chinese

    Diao X G, Yang C F, Zhang Q, et al. 2021. Analysis on the evolution characteristics of storm parameters and ZDR column for two long life supercells. Plateau Meteor, 403): 580-589 (in Chinese)
    [3] 樊李苗,俞小鼎. 2020. 杭州地区夏季午后雷暴大风环境条件分析. 气象,46(12):1621-1632. Fan L M,Yu X D. 2020. Analysis on the environment conditions of afternoon thunderstorm in Hangzhou. Meteor Mon,46(12):1621-1632 (in Chinese doi: 10.7519/j.issn.1000-0526.2020.12.009

    Fan L M, Yu X D. 2020. Analysis on the environment conditions of afternoon thunderstorm in Hangzhou. Meteor Mon, 4612): 1621-1632 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.12.009
    [4] 高丽,潘佳文,蒋璐璐等. 2021. 一次长生命史超级单体降雹演化机制及双偏振雷达回波分析. 气象,47(2):170-182. Gao L,Pan J W,Jiang L L,et al. 2021. Analysis of evolution mechanism and characteristics of dual polarization radar echo of a hail caused by long-life supercell. Meteor Mon,47(2):170-182 (in Chinese

    Gao L, Pan J W, Jiang L L, et al. 2021. Analysis of evolution mechanism and characteristics of dual polarization radar echo of a hail caused by long-life supercell. Meteor Mon, 472): 170-182 (in Chinese)
    [5] 侯淑梅,闵锦忠,王改利等. 2020. 传播运动在对流风暴合并过程中的作用. 大气科学学报,43(2):347-357. Hou S M,Min J Z,Wang G L,et al. 2020. Effect of propagation moving on the convective storm mergence process. Trans Atmos Sci,43(2):347-357 (in Chinese doi: 10.13878/j.cnki.dqkxxb.20180416002

    Hou S M, Min J Z, Wang G L, et al. 2020. Effect of propagation moving on the convective storm mergence process. Trans Atmos Sci, 432): 347-357 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20180416002
    [6] 潘佳文,蒋璐璐,魏鸣等. 2020a. 一次强降水超级单体的双偏振雷达观测分析. 气象学报,78(1):86-100. Pan J W,Jiang L L,Wei M,et al. 2020a. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica,78(1):86-100 (in Chinese

    Pan J W, Jiang L L, Wei M, et al. 2020a. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica, 781): 86-100 (in Chinese)
    [7] 潘佳文,魏鸣,郭丽君等. 2020b. 闽南地区大冰雹超级单体演变的双偏振特征分析. 气象,46(12):1608-1620. Pan J W,Wei M,Guo L J,et al. 2020b. Dual-polarization radar characteristic analysis of the evolution of heavy hail supercell in southern Fujian. Meteor Mon,46(12):1608-1620 (in Chinese

    Pan J W, Wei M, Guo L J, et al. 2020b. Dual-polarization radar characteristic analysis of the evolution of heavy hail supercell in southern Fujian. Meteor Mon, 4612): 1608-1620 (in Chinese)
    [8] 潘佳文,高丽,魏鸣等. 2021. 基于S波段双偏振雷达观测的雹暴偏振特征分析. 气象学报,79(1):168-180. Pan J W,Gao L,Wei M,et al. 2021. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica,79(1):168-180 (in Chinese

    Pan J W, Gao L, Wei M, et al. 2021. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica, 791): 168-180 (in Chinese)
    [9] 潘佳文,彭婕,魏鸣等. 2022. 副热带高压背景下极端短时强降水的双偏振相控阵雷达观测分析. 气象学报,80(5):748-764. Pan J W,Peng J,Wei M,et al. 2022. Analysis of an extreme flash rain event under the background of subtropical high based on dual-polarization phased array radar observations. Acta Meteor Sinica,80(5):748-764 (in Chinese

    Pan J W, Peng J, Wei M, et al. 2022. Analysis of an extreme flash rain event under the background of subtropical high based on dual-polarization phased array radar observations. Acta Meteor Sinica, 805): 748-764 (in Chinese)
    [10] 沈雨,周筠珺,邹书平等. 2023. 一次孤立单体雹暴过程“ ZDR柱”演变特征分析. 气象科技,51(1):104-114. Shen Y,Zhou Y J,Zou S P,et al. 2023. Analysis of evolution characteristics of “ ZDR Column” in an isolated hail storm. Meteor Sci Technol,51(1):104-114 (in Chinese

    Shen Y, Zhou Y J, Zou S P, et al. 2023. Analysis of evolution characteristics of “ZDR Column” in an isolated hail storm. Meteor Sci Technol, 511): 104-114 (in Chinese)
    [11] 王俊,盛日锋,陈西利. 2011. 一次弓状回波、强对流风暴及合并过程研究Ⅱ:双多普勒雷达反演三维风场分析. 高原气象,30(4):1078-1086. Wang J,Sheng R F,Chen X L. 2011. Case study of bow echo,severe convective storm and merger process Ⅱ:Analysis on three-dimensional wind field retrieved by dual Doppler radar. Plateau Meteor,30(4):1078-1086 (in Chinese

    Wang J, Sheng R F, Chen X L. 2011. Case study of bow echo, severe convective storm and merger process Ⅱ: Analysis on three-dimensional wind field retrieved by dual Doppler radar. Plateau Meteor, 304): 1078-1086 (in Chinese)
    [12] 吴翀. 2018. 双偏振雷达的资料质量分析,相态识別及组网应用[D]. 南京:南京信息工程大学,150pp. Wu C. 2018. Data quality analysis,hydrometeor classification and mosaic application of polarimetric radars in China[D]. Nanjing:Nanjing University of Information Science & Technology,150pp (in Chinese

    Wu C. 2018. Data quality analysis, hydrometeor classification and mosaic application of polarimetric radars in China[D]. Nanjing: Nanjing University of Information Science & Technology, 150pp (in Chinese)
    [13] 吴举秀,魏鸣,刁秀广等. 2023a. 强降雹超级单体风暴湍流结构的双偏振回波特征分析. 高原气象,42(1):139-149. Wu J X,Wei M,Diao X G,et al. 2023a. Analysis of dual polarization characteristics of turbulent structure from hail supercell storms. Plateau Meteor,42(1):139-149 (in Chinese

    Wu J X, Wei M, Diao X G, et al. 2023a. Analysis of dual polarization characteristics of turbulent structure from hail supercell storms. Plateau Meteor, 421): 139-149 (in Chinese)
    [14] 吴举秀,胡志群,夏凡等. 2023b. 基于贝叶斯方法的冰雹大小识别研究. 气象学报,81(5):801-814 Wu J X,Hu Z Q,Xia F,et al. 2023b. Hail size discrimination based on Bayesian method. Acta Meteor Sinica,81(5):801-814 (in Chinese).
    [15] 张培昌,杜秉玉,戴铁丕. 2001. 雷达气象学. 北京:气象出版社,392-393. Zhang P C,Du B Y,Dai T P. 2001. Radar Meteorology. Beijing:China Meteorological Press,392-393 (in Chinese

    Zhang P C, Du B Y, Dai T P. 2001. Radar Meteorology. Beijing: China Meteorological Press, 392-393 (in Chinese)
    [16] Bigg E K. 1953. The formation of atmospheric ice crystals by the freezing of droplets. Quart J Roy Meteor Soc,79(342):510-519 doi: 10.1002/qj.49707934207
    [17] Bluestein H B,Sohl C J. 1979. Some observations of a splitting severe thunderstorm. Mon Wea Rev,107(7):861-73 doi: 10.1175/1520-0493(1979)107<0861:SOOASS>2.0.CO;2
    [18] Brandes E A,Vivekanandan J,Tuttle J D,et al. 1995. A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon Wea Rev,123(11):3129-3143 doi: 10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2
    [19] Bringi V N,Burrows D A,Menon S M. 1991. Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J Appl Meteor,30(6):853-880 doi: 10.1175/1520-0450(1991)030<0853:MRAASO>2.0.CO;2
    [20] Browning K A. 1962. Cellular structure of convective storms. Meteor Mag,91(1085):341-350
    [21] Dixon M,Wiener G. 1993. TITAN:thunderstorm identification,tracking,analysis,and nowcasting:A radar-based methodology. J Atmos Ocean Technol,10(6):785-797 doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
    [22] Grasso L D,Hilgendorf E R. 2001. Observations of a severe left moving thunderstorm. Wea Forecasting,16(4):500-511 doi: 10.1175/1520-0434(2001)016<0500:OOASLM>2.0.CO;2
    [23] Hall M P M,Cherry S M,Goddard J W F,et al. 1980. Rain drop sizes and rainfall rate measured by dual-polarization radar. Nature,285(5762):195-198 doi: 10.1038/285195a0
    [24] Johnson J T,MacKeen P L,Witt A,et al. 1998. The storm cell identification and tracking algorithm:An enhanced WSR-88D algorithm. Wea Forecasting,13(2):263-276 doi: 10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
    [25] Kumjian M R,Khain A P,Benmoshe N,et al. 2014. The anatomy and physics of ZDR columns:investigating a polarimetric radar signature with a spectral bin microphysical model. J Appl Meteor Climatol,53(7):1820-1843 doi: 10.1175/JAMC-D-13-0354.1
    [26] Pruppacher H R,Klett J D. 1997. Microphysics of Clouds and Precipitation. 2nd ed. Dordrecht:Kluwer Academic,348pp
    [27] Smith P L,Musil D J,Detwiler A G,et al. 1999. Observations of mixed-phase precipitation within a CaPE thunderstorm. J Appl Meteor,38(2):145-155 doi: 10.1175/1520-0450(1999)038<0145:OOMPPW>2.0.CO;2
    [28] Snyder J C,Ryzhkov A V,Kumjian M R,et al. 2015. A ZDR column detection algorithm to examine convective storm updrafts. Wea Forecasting,30(6):1819-1844 doi: 10.1175/WAF-D-15-0068.1
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  24
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-10-16
  • 修回日期:  2023-08-03
  • 网络出版日期:  2023-08-08

目录

    /

    返回文章
    返回