Cloud cover characteristics in Sichuan-Chongqing region based on geostationary satellite data
-
摘要: 利用气象卫星风云四号A星和葵花8号观测资料,根据川渝地区独特的地形、地势将其分为东部低海拔地区和西部高海拔地区,建立高分辨率的网格化无云背景场,作为无云与有云辐射差异对比,使用阈值法进行晴空、水云、冰云、低层云雾、霾和积雪的检测,进而提高云识别信度,统计分析2016—2021年川渝地区云覆盖时、空分布特征。研究表明:川渝地区云的区域分布特征明显,东、西部存在明显差异,总体呈东多西少,云覆盖频率常年存在高值中心,云覆盖面积有明显月变化。东部低海拔地区云覆盖频率常年在70%—80%,而西部高海拔地区云覆盖频率在50%—65%。云覆盖频率的高、低值过渡区对应青藏高原与四川盆地之间的陡峭地形区,这与地形地势、水汽条件和大气环流特征有关。各月的云覆盖面积在东部低海拔地区相对稳定(占比在60%—80%),而西部高海拔地区差异较大。其中东部的冰云和西部的总云面积具有显著月变化(单峰)特征,峰值出现在7月,分别为37%和76%。6 a中各类型云覆盖面积占比年际波动较小,东部的云覆盖面积占比常年超过70%,其中水云占比最大(35%—40%),冰云次之(20%左右),低层云雾最小(约13%);西部的云覆盖面积占比常年约60%(水云24%—26%,冰云22%—25%,低层云雾约10%)。Abstract: This study is based on observations of meteorological satellites Fengyun-4A and Himawari-8 and combined with the unique terrain over the Sichuan-Chongqing region, which is divided into the eastern low-altitude and the western high-altitude regions. A high-resolution gridded cloudless background field is established for comparison of radiation between cloudless and cloudy environments. The detection of clear sky, water cloud, ice cloud, low cloud/fog, haze, and snow using threshold method is realized to improve the confidence of cloud recognition. Temporal and spatial distributions of all the above types are analyzed from 2016 to 2021. Results show that clouds in the Sichuan-Chongqing region have significant regional characteristics and generally show a notable difference between the east and the west. The overall pattern of cloud cover frequency is larger in the east and smaller in the west. The cloud cover frequency has a high-value center throughout the year, and the cloud cover area has obvious monthly variations. The cloud cover frequency in the eastern low-altitude region is 70%—80% all the year round, while in the western high-altitude region it is 50%—65%. The high- and low-value transition area of cloud cover frequency corresponds to the steep terrain area between the Qingzang plateau and Sichuan basin, and is related to terrain, water vapor condition, and atmospheric circulation characteristics. The cloud cover area in the eastern low-altitude region is relatively stable in each month, accounting for 60%—80%, while the difference is significant in the western high-altitude region. The ice cloud area in the eastern region and the total cloud area in the western region both exhibit significant monthly variations (single peaks) with respective peaks of 37% and 76% appearing in July. In these six years, the interannual fluctuation of all the types is relatively small, and the cloud cover area in the eastern region exceeds 70% throughout the year with water clouds accounting for the largest proportion (35%—40%), ice cloud accounting for the second largest (about 20%), and low cloud/fog accounting for the smallest (about 13%). The cloud cover area in the westernregion accounts for about 60% throughout the year (water clouds 24%—26%, ice clouds 22%—25%, and low cloud/fog about 10%).
-
图 3 检测结果对比 (a. AHI,b. AGRI,c. RGB真彩图,d. CALIOP; AHI和AGRI数据时间是2020年1月1日05时00分、04时53分,相应的CALIOP时间是2020年1月1日05时37分 (世界时,下同);紫色实线为CALIOP的轨迹)
Figure 3. Comparison of detection results (a. AHI,b. AGRI,c. RGB true color,d. CALIOP;the AHI and AGRI observations are at 05:00 and 04:53 UTC 1 January 2020,respectively,and simultaneous CALIOP observation is at 05:37 UTC 1 January 2020;the solid purple line represents the CALIOP track)
表 1 所用AGRI和AHI通道
Table 1. AGRI and AHI channels used for the present study
通道中心波长 ( μm ) AGRI AHI 中心波长
光谱带宽( μm )分辨率 ( km ) 中心波长
光谱带宽( μm )分辨率 ( km ) 0.47 0.47 (0.45—0.49) 1.0 0.47 (0.45—0.49) 1.0 0.65 0.65 (0.55—0.75) 0.5—1.0 0.64 (0.63—0.66) 0.5 1.61 1.61 (1.58—1.64) 2.0 1.61(1.60—1.62) 2.0 3.8 3.75 (3.50—4.00) 2.0 3.85 (3.74—3.96) 2.0 8.5 8.50 (8.00—9.00) 4.0 8.60 (8.44—8.76) 2.0 11.0 10.80 (10.30—11.30) 4.0 11.20 (11.10—11.30) 2.0 注:当两个仪器通道的中心波长存在差异时,为表述方便,选择一个数值代表与两者最接近的通道。 表 2 各类型检测方法及阈值
Table 2. Methods and thresholds for the detection of each type
检测类型 通道及阈值 参考文献 云雾 R(0.47)−BG(0.47)>0.10
且R(0.47)>0.12
或BTD(11.0−3.8)<−14.0 KFrey,et al,2008 低层云雾 AGRI:ΔR(0.65−1.61)<
−0.025
AHI: ΔR(0.65−1.61)<0张培等,2019;
Ryu,et al,2020;
Yang,et al,2021冰云 AGRI:BT(8.5)<283.0 K且
BTD(8.5−11.0)>−1.5 K
AHI:BT(8.5)<285.0 K且
BTD(8.5−11.0)>−1.0 KBaum,et al,2012;
朝鲁门等,2019积雪 NDSI>0.36且 DEM≥1500 m Xiao,et al,2001;
Shang,et al,2017霾 R(0.47)>0.11 注:R表示反射率,例如R(0.65)表示0.65 μm通道反射率,ΔR(0.65−1.61)表示两通道反射率差,BT表示亮度温度,例如BT(8.5)表示8.5 μm通道亮度温度,BTD(8.5−11)表示两通道亮温差。 -
[1] 朝鲁门,宁小莉,包玉海等. 2019. 基于葵花-8卫星的白天冰云识别初探. 内蒙古农业大学学报(自然科学版),40(2):45-49. Chao L M,Ning X L,Bao Y H,et al. 2019. Preliminary study of identification day ice cloud based on Himawari-8 data. J Inner Mongolia Agric Univ (Nat Sci Ed),40(2):45-49 (in Chinese Chao L M, Ning X L, Bao Y H, et al .2019 . Preliminary study of identification day ice cloud based on Himawari-8 data. J Inner Mongolia Agric Univ (Nat Sci Ed),40 (2 ):45 -49 (in Chinese)[2] 丁守国,赵春生,石广玉等. 2005. 近20年全球总云量变化趋势分析. 应用气象学报,16(5):670-677. Ding S G,Zhao C S,Shi G Y,et al. 2005. Analysis of global total cloud amount variation over the past 20 years. J Appl Meteor Sci,16(5):670-677 (in Chinese Ding S G, Zhao C S, Shi G Y, et al .2005 . Analysis of global total cloud amount variation over the past 20 years. J Appl Meteor Sci,16 (5 ):670 -677 (in Chinese)[3] 李慧晶,刘建西,刘东升等. 2014. 西南地区云量变化特征. 干旱气象,32(2):194-200. Li H J,Liu J X,Liu D S,et al. 2014. Variation characteristics of cloud cover over Southwestern China. J Arid Meteor,32(2):194-200 (in Chinese Li H J, Liu J X, Liu D S, et al .2014 . Variation characteristics of cloud cover over Southwestern China. J Arid Meteor,32 (2 ):194 -200 (in Chinese)[4] 李昀英,寇雄伟,方乐锌等. 2015. 中国东部云-降水对应关系的分析与模式评估. 气象学报,73(4):766-777. Li Y Y,Kou X W,Fang L X,et al. 2015. Analysis and model evaluation of the relationship between clouds and precipitation over Eastern China. Acta Meteor Sinica,73(4):766-777 (in Chinese Li Y Y, Kou X W, Fang L X, et al .2015 . Analysis and model evaluation of the relationship between clouds and precipitation over Eastern China. Acta Meteor Sinica,73 (4 ):766 -777 (in Chinese)[5] 梁潇云,刘屹岷,吴国雄. 2005. 青藏高原隆升对春、夏季亚洲大气环流的影响. 高原气象,24(6):837-845. Liang X Y,Liu Y M,Wu G X. 2005. The impact of Qinghai-Xizang Plateau uplift on Asian general circulation in spring and summer. Plateau Meteor,24(6):837-845 (in Chinese Liang X Y, Liu Y M, Wu G X .2005 . The impact of Qinghai-Xizang Plateau uplift on Asian general circulation in spring and summer. Plateau Meteor,24 (6 ):837 -845 (in Chinese)[6] 刘洪利,朱文琴,宜树华等. 2003. 中国地区云的气候特征分析. 气象学报,61(4):466-473. Liu H L,Zhu W Q,Yi S H,et al. 2003. Climatic analysis of the cloud over China. Acta Meteor Sinica,61(4):466-473 (in Chinese Liu H L, Zhu W Q, Yi S H, et al .2003 . Climatic analysis of the cloud over China. Acta Meteor Sinica,61 (4 ):466 -473 (in Chinese)[7] 刘健,王锡津. 2017. 主要卫星云气候数据集评述. 应用气象学报,28(6):654-665. Liu J,Wang X J. 2017. Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci,28(6):654-665 (in Chinese Liu J, Wang X J .2017 . Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci,28 (6 ):654 -665 (in Chinese)[8] 刘奇,傅云飞,冯沙. 2010. 基于ISCCP观测的云量全球分布及其在NCEP再分析场中的指示. 气象学报,68(5):689-704. Liu Q,Fu Y F,Feng S. 2010. Geographical patterns of the cloud amount derived from the ISCCP and their correlation with the NCEP reanalysis datasets. Acta Meteor Sinica,68(5):689-704 (in Chinese Liu Q, Fu Y F, Feng S .2010 . Geographical patterns of the cloud amount derived from the ISCCP and their correlation with the NCEP reanalysis datasets. Acta Meteor Sinica,68 (5 ):689 -704 (in Chinese)[9] 刘瑞霞,刘玉洁,杜秉玉. 2004. 中国云气候特征的分析. 应用气象学报,15(4):468-476. Liu R X,Liu Y J,Du B Y. 2004. Cloud climatology characteristics of China from ISCCP data. J Appl Meteor Sci,15(4):468-476 (in Chinese Liu R X, Liu Y J, Du B Y .2004 . Cloud climatology characteristics of China from ISCCP data. J Appl Meteor Sci,15 (4 ):468 -476 (in Chinese)[10] 卢乃锰,方翔,刘健等. 2017. 气象卫星的云观测. 气象,43(3):257-267. Lu N M,Fang X,Liu J,et al. 2017. Understanding clouds by meteorological satellite. Meteor Mon,43(3):257-267 (in Chinese Lu N M, Fang X, Liu J, et al .2017 . Understanding clouds by meteorological satellite. Meteor Mon,43 (3 ):257 -267 (in Chinese)[11] 吕巧谊,张玉轩,李积明. 2017. 南半球中高纬度区域不同类型云的辐射特性. 气象学报,75(4):596-606. Lü Q Y,Zhang Y X,Li J M. 2017. Radiative characteristics of various cloud types over southern mid-high latitudes. Acta Meteor Sinica,75(4):596-606 (in Chinese Lü Q Y, Zhang Y X, Li J M .2017 . Radiative characteristics of various cloud types over southern mid-high latitudes. Acta Meteor Sinica,75 (4 ):596 -606 (in Chinese)[12] 牛生杰,陆春松,吕晶晶等. 2016. 近年来中国雾研究进展. 气象科技进展,6(2):6-19. Niu S J,Lu C S,Lü J J,et al. 2016. Advances in fog research in China. Adv Meteor Sci Technol,6(2):6-19 (in Chinese Niu S J, Lu C S, Lü J J, et al .2016 . Advances in fog research in China. Adv Meteor Sci Technol,6 (2 ):6 -19 (in Chinese)[13] 吴国雄,毛江玉,段安民等. 2004. 青藏高原影响亚洲夏季气候研究的最新进展. 气象学报,62(5):528-540. Wu G X,Mao J Y,Duan A M,et al. 2004. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate. Acta Meteor Sinica,62(5):528-540 (in Chinese Wu G X, Mao J Y, Duan A M, et al .2004 . Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate. Acta Meteor Sinica,62 (5 ):528 -540 (in Chinese)[14] 肖递祥,杨康权,俞小鼎等. 2017. 四川盆地极端暴雨过程基本特征分析. 气象,43(10):1165-1175. Xiao D X,Yang K Q,Yu X D,et al. 2017. Characteristics analyses of extreme rainstorm events in Sichuan Basin. Meteor Mon,43(10):1165-1175 (in Chinese Xiao D X, Yang K Q, Yu X D, et al .2017 . Characteristics analyses of extreme rainstorm events in Sichuan Basin. Meteor Mon,43 (10 ):1165 -1175 (in Chinese)[15] 徐兴奎. 2012. 中国区域总云量和低云量分布变化. 气象,38(1):90-95. Xu X K. 2012. Spatiotemporal variation of total cloud and low cloud over China. Meteor Mon,38(1):90-95 (in Chinese Xu X K .2012 . Spatiotemporal variation of total cloud and low cloud over China. Meteor Mon,38 (1 ):90 -95 (in Chinese)[16] 张华,荆现文. 2016. 气候模式中云的垂直重叠及其辐射传输问题研究进展. 气象学报,74(1):103-113. Zhang H,Jing X W. 2016. Advances in studies of cloud overlap and its radiative transfer issues in the climate models. Acta Meteor Sinica,74(1):103-113 (in Chinese Zhang H, Jing X W .2016 . Advances in studies of cloud overlap and its radiative transfer issues in the climate models. Acta Meteor Sinica,74 (1 ):103 -113 (in Chinese)[17] 张培,吴东. 2019. 基于Himawari-8数据的日间海雾检测方法. 大气与环境光学学报,14(3):211-220. Zhang P,Wu D. 2019. Daytime sea fog detection method using Himawari-8 data. J Atmos Environ Opt,14(3):211-220 (in Chinese Zhang P, Wu D .2019 . Daytime sea fog detection method using Himawari-8 data. J Atmos Environ Opt,14 (3 ):211 -220 (in Chinese)[18] 张琪,李跃清,陈权亮等. 2011. 近46年西南地区云量的时空变化特征. 高原气象,30(2):339-348. Zhang Q,Li Y Q,Chen Q L,et al. 2011. Temporal and spatial distributions of cloud cover over Southwest China in recent 46 years. Plateau Meteor,30(2):339-348 (in Chinese Zhang Q, Li Y Q, Chen Q L, et al .2011 . Temporal and spatial distributions of cloud cover over Southwest China in recent 46 years. Plateau Meteor,30 (2 ):339 -348 (in Chinese)[19] Baum B A,Menzel W P,Frey R A,et al. 2012. MODIS cloud-top property refinements for collection 6. J Appl Meteor Climatol,51(6):1145-1163 doi: 10.1175/JAMC-D-11-0203.1 [20] Chen D D,Guo J P,Wang H Q,et al. 2018. The cloud top distribution and diurnal variation of clouds over East Asia:Preliminary results from advanced Himawari imager. J Geophys Res Atmos,123(7):3724-3739 doi: 10.1002/2017JD028044 [21] Chen Y L,Chen G C,Cui C G,et al. 2020. Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites. Atmos Chem Phys,20(2):1131-1145 doi: 10.5194/acp-20-1131-2020 [22] Da C. 2015. Preliminary assessment of the advanced Himawari imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens Lett,6(8):637-646 doi: 10.1080/2150704X.2015.1066522 [23] Dessler A E. 2010. A determination of the cloud feedback from climate variations over the past decade. Science,330(6010):1523-1527 doi: 10.1126/science.1192546 [24] Frey R A,Ackerman S A,Liu Y H,et al. 2008. Cloud detection with MODIS. Part I:Improvements in the MODIS cloud mask for collection 5. J Atmos Ocean Technol,25(7):1057-1072 doi: 10.1175/2008JTECHA1052.1 [25] Liu Y H,Ackerman S A,Maddux B C,et al. 2010. Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. J Climate,23(7):1894-1907 doi: 10.1175/2009JCLI3386.1 [26] Liu Z Y,Vaughan M,Winker D,et al. 2009. The CALIPSO lidar cloud and aerosol discrimination:Version 2 algorithm and initial assessment of performance. J Atmos Ocean Technol,26(7):1198-1213 doi: 10.1175/2009JTECHA1229.1 [27] Myers T A,Scott R C,Zelinka M D,et al. 2021. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat Climate Change,11(6):501-507 doi: 10.1038/s41558-021-01039-0 [28] Platnick S,King M D,Ackerman S A,et al. 2003. The MODIS cloud products:Algorithms and examples from Terra. IEEE Trans Geosci Remote Sens,41(2):459-473 doi: 10.1109/TGRS.2002.808301 [29] Ryu H S,Hong S. 2020. Sea fog detection based on normalized difference snow index using advanced Himawari imager observations. Remote Sens,12(9):1521 doi: 10.3390/rs12091521 [30] Scott R C,Myers T A,Norris J R,et al. 2020. Observed sensitivity of low-cloud radiative effects to meteorological perturbations over the global oceans. J Climate,33(18):7717-7734 doi: 10.1175/JCLI-D-19-1028.1 [31] Shang H Z,Chen L F,Letu H,et al. 2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. J Geophys Res Atmos,122(6):3528-3543 doi: 10.1002/2016JD025659 [32] Wang X,Min M,Wang F,et al. 2019. Intercomparisons of cloud mask products among Fengyun-4A,Himawari-8,and MODIS. IEEE Trans Geosci Remote Sens,57(11):8827-8839 doi: 10.1109/TGRS.2019.2923247 [33] Winker D M,Vaughan M A,Omar A,et al. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol,26(11):2310-2323 doi: 10.1175/2009JTECHA1281.1 [34] Xiao X M,Shen Z X,Qin X G. 2001. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover:A normalized difference snow and ice index. Int J Remote Sens,22(13):2479-2487 doi: 10.1080/01431160119766 [35] Xu W J,Lyu D. 2021. Evaluation of cloud mask and cloud top height from Fengyun-4A with MODIS cloud retrievals over the Tibetan Plateau. Remote Sens,13(8):1418 doi: 10.3390/rs13081418 [36] Yang J,Zhang Z Q,Wei C Y,et al. 2017. Introducing the new generation of Chinese geostationary weather satellites,Fengyun-4. Bull Amer Meteor Soc,98(8):1637-1658 doi: 10.1175/BAMS-D-16-0065.1 [37] Yang J H,Yoo J M,Choi Y S. 2021. Advanced dual-satellite method for detection of low stratus and fog near Japan at dawn from FY-4A and Himawari-8. Remote Sens,13(5):1042 doi: 10.3390/rs13051042 [38] Zhou C,Zelinka M D,Klein S A. 2016. Impact of decadal cloud variations on the earth's energy budget. Nat Geosci,9(12):871-874 doi: 10.1038/ngeo2828 -