3DVar中不同水平相关模型方案对河南“7.20”暴雨模拟的影响

The impact of different horizontal correlation model in 3DVar on the simulation of the “7.20”extreme rainstorm event in Henan province

  • 摘要: 三维变分同化的背景误差水平相关模型决定着观测信息在模式格点上的传播,并影响模式在不同空间尺度的分析质量。基于CMA-MESO系统,本文开展了高斯、二阶自回归和尺度叠加高斯水平相关模型对分析预报的影响研究。u、v风场作为控制变量的单点观测同化试验结果表明,三种水平相关模型均能够更合理地描述风场的水平相关关系,分析增量分布合理。尺度叠加的高斯相关模型和二阶自回归模型相对高斯模型均能使分析增量获得更多的中小尺度信息。“7.20”河南极端暴雨天气过程的数值模拟表明,二阶自回归相关模型和尺度叠加的高斯相关模型比高斯相关模型能获得更接近实况的环流形势场及水汽场,能够有效增加大气中低层中小尺度的分析信息,从而提升了河南中部降水强度预报质量,解决降水落区中心偏西偏弱的问题,使得降水预报场与实况更加吻合。二阶自回归相关模型相对于高斯相关模型能够提高3小时累计降水的ETS评分,尤其是暴雨量级的评分,这对灾害性降水的预报有较大的指示意义;对于17至22日6天24小时的降水评分而言,尺度叠加的高斯相关模型相较二阶自回归模型在大到暴雨量级的ETS评分较高,但空报较多。

     

    Abstract: The horizontal correlation function of background error in three-dimensional variational data assimilation (3DVar) determines the extent to which observational information propagates across grid points and influences the analysis at various spatial scales. This study explores the application of the second-order auto-regressive (Soar), Gaussian and Supergauss function based on the CMA-MESO system. The result from the single-point test indicates that when using the u and v-component as background error covariance, three correlation models provide a more reasonable representation of the wind field horizontal correlations, resulting in a more coherent distribution of analysis increments.The Soar and Supergauss functions gain more information on meso- and small-scales compared to the Gaussian components. Numerical simulations of the extreme rainstorm event reveal that the Soar and Supergauss function achieve a closer alignment with actual circulation and moisture fields compared to the Gauss correlation function. Moreover, the Soar and Supergauss function can effectively increase the analysis information on meso- and small-scales in the lower atmosphere, significantly improving precipitation forecast accuracy in the center of Henan. It resolves problems related to the westward and weaker bias in precipitation forecast, thus the intensity and the fields are well simulated. As a result, compared to the Gauss correlation function, the Soar correlation function improves scores ETS for 3-hour accumulated precipitation, particularly in heavy rainfall, which is meaningful for forecasting extreme precipitation events. For the 24-hour precipitation scores over 6 days, the Supergauss function has a higher score ETS but larger BIAS and false alarms compared to the Soar correlation function.

     

/

返回文章
返回