北极-中纬度联系研究百年进展概述

Overview of the centennial progress in research on the Arctic-midlatitude connection

  • 摘要: 概要总结了自中国气象学会成立(1924年)以来,北极-中纬度联系研究所取得的代表性研究成果:(1)北大西洋涛动、北极涛动以及北极偶极子模态的揭示,是北极-中纬度大尺度动力学联系研究中的三个里程碑。(2)20世纪90年代中期以前,中国学者揭示的北极冷空气影响东亚寒潮过程的关键路径、寒潮关键区以及寒潮冷高压的动力学过程,是北极-中纬度联系研究的杰出代表,深刻影响了我国天气学的发展和冬季寒潮过程的预测。(3)始于20世纪90年代后期的北极增暖、北极海冰持续消融是气候系统变化中最为引人注目的标志,不仅对北极的生态环境产生深远的影响,影响还外溢至北半球中、低纬度区域。北极海冰消融、北极增暖异常通过影响海洋表面水汽蒸发和湍流热通量、大气经向温度梯度、纬向风、风暴轴路径和强度、大尺度水平遥相关波列以及行星波在对流层和平流层之间的传播过程,来影响中纬度天气事件和气候变化。(4)北极海冰融化对冬季大气环流的年代际变化起重要调节作用,导致冬季暖北极-冷欧亚(2004/2005—2012/2013)和暖北极-暖欧亚(2013/2014—2018/2019)阶段性变化的相继出现,前者加强了北极-中纬度之间的联系,而后者对应北极-中纬度联系明显减弱。(5)北极海冰融化有利于夏季北极对流层中、低层冷异常的频繁出现,从而在高纬度区域产生阻塞型环流异常,有利于夏季高纬度区域高温热浪和野火的发生。(6)从青藏高原到我国东部的中、低纬度区域,夏季区域平均高温热浪发生频次与北极夏季对流层中、低层冷异常的频繁出现有直接的动力学联系。亚洲大陆纬向风的系统性北移是连接北极冷异常与东亚高温热浪的内在机制。未来北极-中纬度联系研究应更加关注北极海冰融化在大气环流低频变化中的作用,强调北极海冰空间异常分布差异和不同异常幅度的影响,定量化研究北极海冰融化在极端天气和气候事件中的作用。研究北极海-冰-气耦合在东亚天气和气候变化中的预报、预测应用。预估未来不同气候变化情境下北极-中纬度联系变化特征以及适应和应对举措。

     

    Abstract: This paper provides a brief summary of representative research outcomes on the Arctic-midlatitude connection since the founding of the Chinese Meteorological Society in 1924. Major findings are as follows.(1)The revelation of the North Atlantic Oscillation, the Arctic Oscillation, and the Arctic Dipole anomaly represents three significant milestones in the study of large-scale Arctic-midlatitude teleconnections. (2)Before the mid-1990s, Chinese scholars revealed the key pathways by which Arctic cold air affects cold wave processes in East Asia, the key areas of cold waves, and the dynamical processes of cold high pressure during cold waves. These findings are outstanding representatives of researches on Arctic-midlatitude connection and have profoundly influenced the development of meteorological sciences in China and the prediction of cold wave processes in winter.(3)The melting of Arctic sea ice and Arctic warming anomalies influence mid-latitude weather events and climate variations by affecting evaporation of water vapor from the ocean surface, turbulent heat flux between the atmosphere and the ocean, meridional temperature gradient in the atmosphere, zonal winds, path and intensity of storm tracks, and propagation of large-scale horizontal teleconnection patterns and planetary waves between the troposphere and stratosphere.(4)The melting of Arctic sea ice plays an important role in modulating interdecadal variation of wintertime atmospheric circulation, leading to alternative occurrences of warm Arctic-cold Eurasia (2004/05—2012/13) and warm Arctic-warm Eurasia (2013/14—2018/19). The former strengthens the connection between the Arctic and the mid-latitude, while the latter corresponds to a noticeable weakening of the Arctic-mid-latitude connection.(5)The melting of Arctic sea ice facilitates a frequent occurrence of Arctic cold anomalies in the middle and lower troposphere during summer, leading to the formation of blocking circulation anomalies in high-latitude regions that are conducive to the occurrence of heatwaves and wildfires in some high-latitude regions.(6)The frequency of summertime heatwaves averaged from the Tibetan Plateau to the mid- and low-latitude areas of eastern China has a direct dynamical link with the frequent occurrence of summertime Arctic cold anomalies in the middle and lower troposphere. The systematic northward shift of zonal winds in the troposphere over East Asia is the underlying mechanism that links Arctic cold anomalies to heatwaves in East Asia. Future research on Arctic-midlatitude connections should pay more attention to the impact of Arctic sea ice melting on low-frequency variability of atmospheric circulation, especially the impacts of both different spatial anomalies and amplitudes of anomalies in Arctic sea ice concentrations. It is necessary to quantitatively examine the impact of Arctic sea ice melting on extreme weather and climate events.

     

/

返回文章
返回