留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候模式分辨率对气溶胶气候效应数值结果的影响

郜倩倩 刘煜 郭增元 彭艳玉

郜倩倩,刘煜,郭增元,彭艳玉. 2022. 气候模式分辨率对气溶胶气候效应数值结果的影响. 气象学报,80(4):1-18 doi: 10.11676/qxxb2022.019
引用本文: 郜倩倩,刘煜,郭增元,彭艳玉. 2022. 气候模式分辨率对气溶胶气候效应数值结果的影响. 气象学报,80(4):1-18 doi: 10.11676/qxxb2022.019
Gao Qianqian, Liu Yu, Guo Zengyuan, Peng Yanyu. 2022. The impact of climate model resolution on numerical results of aerosol climate effects. Acta Meteorologica Sinica, 80(4):1-18 doi: 10.11676/qxxb2022.019
Citation: Gao Qianqian, Liu Yu, Guo Zengyuan, Peng Yanyu. 2022. The impact of climate model resolution on numerical results of aerosol climate effects. Acta Meteorologica Sinica, 80(4):1-18 doi: 10.11676/qxxb2022.019

气候模式分辨率对气溶胶气候效应数值结果的影响

doi: 10.11676/qxxb2022.019
基金项目: 国家重点研发计划项目 (2017YFA0603501)、中国气象科学研究院科技发展基金项目(2021KJ020)
详细信息
    作者简介:

    郜倩倩,主要从事气溶胶气候变化研究。E-mail:18101283632@163.com

    通讯作者:

    刘煜,主要从事气候变化研究。E-mail:yuliu@cma.gov.cn

  • 中图分类号: P461+.8

The impact of climate model resolution on numerical results of aerosol climate effects

  • 摘要: 气候模式分辨率作为影响模式模拟结果的重要因素,其对气溶胶与云相互作用的影响尚未全面认识。利用公共大气模型CAM5.3在3种分辨率(2°、1°、0.5°)下,分别采用2000年和1850年气溶胶排放情景进行试验,检验提高分辨率是否能改进气候模式的模拟能力,分析不同分辨率下气溶胶气候效应的异同,探索模式分辨率对气溶胶气候效应数值结果的影响。通过观测资料与模式结果对比发现,提高分辨率可以明显改进模式对总云量、云短波辐射强迫的模拟能力,0.5°分辨率下模拟结果与观测更接近,其他变量并无明显改善。在不同分辨率下,全球平均的气溶胶气候效应较为一致,总云量、云水路径均增加,云短波和长波辐射强迫均加强,而云顶的云滴有效半径、地面气温和降水均减少。不同分辨率下,气溶胶增加引起的光学厚度、云水路径、地面温度、云短波和长波辐射强迫的变化的纬向平均分布形势相似但大小存在差异;而降水和云量的变化的纬向分布形势与大小均存在较大差异,在区域尺度上还存在较大的不确定性。全球平均而言, 0.5°分辨率下气溶胶的间接辐射强迫AIF相比1°分辨率下的结果减少了2.5%,相比2°分辨率下的结果减少了6.4%。提高模式分辨率可以部分改进模式模拟能力,同时,气溶胶的间接效应随着模式分辨率的提高而减弱。但气溶胶引起的云量、降水的变化在不同分辨率下差异较大,存在较大不确定性。

     

  • 图 1  各物理量的PD试验结果与观测资料的多年平均纬向对比 (a. 气溶胶的光学厚度,b. 垂直积分的云滴数浓度 (单位:1010 cm−2),c. 云水路径 (单位:g/m2),d. 云顶的云滴有效半径 (单位:μm),e. 总云量 (单位:%),f. 总降水 (单位:mm/d),g. 云短波辐射强迫, h. 云长波辐射强迫 (单位:W/m2))

    Figure 1.  Multi-year average zonal comparison of physical quantities between PD experiment results and observations (a. aerosols optical thickness,b. vertically integrated cloud droplet concentration (unit:1010 cm−2), b. cloud water liquid path (unit:g/m2),c. cloud droplets effective radius at cloud top (unit:μm),e. total cloud fraction (unit:%),f. total precipitation (unit:mm/d),g. cloud short-wave radiative forcing,h. cloud long-wave radiative forcing (unit:W/m2))

    Continued

    图 2  30°S-30°N区域平均的云微物理过程和诊断量的垂直廓线 (a.云水自动转化率, b. 雨水收集率(单位:10−9 kg/(kg.s)),c. 相对湿度(单位:%))

    Figure 2.  Cloud microphysical processes and vertical profiles of some diagnostics in the 30°S-30°N region (a. average cloud-water auto-conversion rate,b. rainwater accretion rate (unit:10−9 kg/(kg.s),c. relative humidity (unit:%) )

    附图1 30°S—30°N云水含量 (单位:mg/m3) 的垂直分布 (a. 2°,b. 1°,c. 0.5° )

    Vertical distribution of cloud water content (unit:mg/m3) in 30°S-30°N latitude zone (a. 2°,b. 1°,c. 0.5° )

    附图2 对流降水 (a) 和大尺度降水 (b) 的PD实验结果(单位:mm/ d) 以及 (c) 两者比值的多年平均纬向分布

    The multi-year average zonal trends of convective precipitation,large-scale precipitation (unit:mm/ d) and the radio (convective precipitation/large-scale precipitation) in PD experiment results

    附图3 雨水收集率 (a) 和云水自动转化率 (b) 的PD试验结果的多年平均纬向分布 (单位:10−6 kg/(m2·s))

    The multi-year average zonal trends of cloud-water autoconversion rate (b) and rainwater accretion rate (a) in PD experiment results (unit:10−6 kg/(m2·s))

    图 3  PD试验与观测资料的泰勒图 (a. 总云量 (单位:%),b. 云水路径 (单位:g/m2),c. 云顶的云滴有效半径 (单位:μm),d. 总降水 (单位:mm/d),e. 云短波辐射强迫 (单位:W/m2),f. 云长波辐射强迫 (单位:W/m2)),

    Figure 3.  Taylor diagram of PD experiment results and observations (a. total cloud fraction (unit:%),b. cloud water liquid path (unit:g/m2), c. cloud droplets effective radius at cloud top (unit:μm),d. total precipitation (unit:mm/d),e. cloud short-wave radiative forcing,f. cloud long-wave radiative forcing (unit:W/m2))

    Continued

    图 4  气溶胶和云变量的PD与PI试验结果差值 (a.气溶胶光学厚度,b.垂直积分的云滴数浓度 (单位:1010 cm−2),c.云顶的云滴有效半径 (单位:μm),d.云水路径 (单位:g/m2))

    Figure 4.  Differences in aerosols and cloud variables between the PD and PI experiment results (a. aerosols optical thickness,b. vertically integrated cloud droplet concentration (unit:1010 cm−2),c. cloud droplets effective radius at cloud top (unit:μm),d. cloud water liquid path (unit:g/m2))

    图 5  降水 (单位:mm/d) 与地面温度 (单位:K) 的PD与PI试验结果差值 (a. 总降水, b. 对流降水, c. 大尺度降水,d. 地面气温)

    Figure 5.  Differences in precipitation (unit:mm/d) and surface temperature (unit:K) between the PD and PI experiment results (a. total precipitation,b. convective precipitation,c. large-scale precipitation,d. surface temperature)

    图 6  不同云量的PD与PI试验结果差值 (a. 低云量, b. 中云量, c. 高云量, d. 总云量;单位:%)

    Figure 6.  Differences in various types of cloud cover between the PD and PI experiment results (a. low cloud cover,b.medium cloud cover,c. high cloud cover,d. total cloud cover;unit:%)

    图 7  云辐射强迫的PD与PI试验结果差值 (a. 云短波辐射强迫,b. 云长波辐射强迫;单位:W/m2

    Figure 7.  Differences in cloud radiative forcing between the PD and PI experiment results (a. cloud short-wave radiative forcing,b. cloud long-wave radiative forcing;unit:W/m2

    图 8  总云量 (a—c,单位:%)、总降水 (d—f,单位:mm/d) 的PD与PI试验结果差值的全球分布 (a、d. 2°分辨率,b、e. 1°分辨率, c、f. 0.5°分辨率)

    Figure 8.  Global distributions of differences in total cloud cover (a,b,c; unit:%) and total precipitation (d,e,f;unit:mm/d ) between the PD and PI experiment results at three horizontal grid intervals of 2°(a,d),1°(b,e),0.5°(c,f)

    图 9  云水路径 (a、b、c;单位:g/m2) 与云短波辐射强迫 (d、e、f;单位:W/m2) 的PD与PI试验结果差值的全球分布 (a、d. 2°分辨率,b、e. 1°分辨率,c、f. 0.5°分辨率)

    Figure 9.  Global distributions of differences in cloud-water liquid path (a,b,c; unit:g/m2 ) and cloud short-wave radiative forcing (d,e,f; unit:W/m2) between PD and PI experiment results at three horizontal grid intervals of 2°(a,d),1°(b,e),0.5°(c,f)

    附图4 三种分辨率下 (a. 2°,b. 1°,c. 0.5° ) 云水自动转化率的PD与PI试验结果差值的全球分布 (单位:10−6 kg/(m2·s))

    The global distribution of the difference in cloud water autoconversion rate (unit:10−6 kg/(m2·s)) between the PD and PI experiment results at three horizontal grid intervals of 2°(a),1°(b)and 0.5°(c)

    表  1  数值试验设计

    Table  1.   Numerical experiments design

    试验分辨率
    (º)
    模拟时间
    (年)
    气溶胶
    排放情景(PD)
    气溶胶
    排放情景(PI)
    2deg215AR5 2000AR5 1850
    1deg115AR5 2000AR5 1850
    0.5deg0.515AR5 2000AR5 1850
    下载: 导出CSV

    表  2  不同分辨率下气溶胶增加引起的物理量变化的全球、半球平均值

    Table  2.   Global and hemispheric averages of changes in physical quantities caused by the increase in aerosols at different resolutions

    变量0.5°
    全球北半球南半球全球北半球南半球全球北半球南半球
    △CDCN(1010cm−23.796.041.543.645.831.453.715.941.48
    △RE(μm)−0.41−0.65−0.17−0.41−0.66−0.15−0.39−0.63−0.15
    △LWP(g/m23.545.271.793.495.341.593.845.861.82
    △TS(K)−0.07−0.09−0.04−0.03−0.06−0.00−0.08−0.14−0.03
    △CLDTOT(%)0.200.330.080.180.41−0.040.260.500.01
    △PRECT(mm/d)−0.017−0.032−0.001−0.017−0.011−0.022−0.013−0.007−0.019
    △PRECL(mm/d)−0.004−0.005−0.003−0.017−0.018−0.016−0.021−0.024−0.017
    △PRECC(mm/d)−0.013−0.0270.0020.0000.007−0.0070.0080.017−0.002
    △SWCF (W/m2−1.75−2.52−0.98−1.65−2.54−0.76−1.62−2.50−0.73
    △LWCF (W/m20.500.740.250.450.90−0.000.450.800.09
    AIF(W/m2−1.25−1.78−0.73−1.20−1.64−0.76−1.17−1.70−0.64
    下载: 导出CSV
  • [1] 郭增元,刘煜,李维亮. 2017. 气溶胶影响亚洲夏季风机理的数值研究. 气象学报,75(5):797-810 doi: 10.11676/qxxb2017.057

    Guo Z Y,Liu Y,Li W L. 2017. A numerical study of the mechanism of aerosols' effect on Asian summer monsoon. Acta Meteor Sinica,75(5):797-810 (in Chinese) doi: 10.11676/qxxb2017.057
    [2] 宋佳琨,陈耀登,陈丹. 2021. 气象-气溶胶资料联合同化对秋季PM_(2.5)浓度模拟的影响研究. 气象学报,79(3):477-491 doi: 10.11676/qxxb2021.026

    Song J K,Chen Y D,Chen D. 2021. Impact of combined meteorological-aerosol data assimilation on PM_(2.5) concentration simulation in autumn. Acta Meteor Sinica,79(3):477-491 (in Chinese) doi: 10.11676/qxxb2021.026
    [3] 史湘军,沈沛洁,朱寿鹏等. 2020. 基于CMIP6强迫模拟分析人为气溶胶的气候效应(一)——介绍NUIST模式评估结果. 大气科学学报,43(3):506-515 doi: 10.13878/j.cnki.dqkxxb.20180919001

    Shi X J,Shen P J,Zhu S P,et al. 2020. A modeling study on anthropogenic aerosol effects based on CMIP6 forcing. Part Ⅰ:NUIST model results and corresponding estimation. Trans Atmos Sci,43(3):506-515 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20180919001
    [4] 杨扬,卢冰,王薇等. 2021. 基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究. 气象学报,79(4):612-625 doi: 10.11676/qxxb2021.045

    Yang Y,Lu B,Wang W,et al. 2021. Impact of WRF-based cumulus convective parameterization scheme on summer precipitation forecasting in China. Acta Meteor Sinica,79(4):612-625 (in Chinese) doi: 10.11676/qxxb2021.045
    [5] 周佰铨,翟盘茂. 2021. IPCC第六次气候变化评估中的气候约束预估方法. 气象学报,79(6):1063-1070 doi: 10.11676/qxxb2021.069

    Zhou,B Q,Zhai,P M. 2021. Climate constraint prediction methods in the IPCC 6th Climate Change Assessment. Acta Meteor Sinica,79(6):1063-1070 (in Chinese) doi: 10.11676/qxxb2021.069
    [6] 周天军,陈梓明,邹立维等. 2020. 中国地球气候系统模式的发展及其模拟和预估. 气象学报,78(3):332-350 doi: 10.11676/qxxb2020.029

    Zhou T J,Chen Z M,Zou L W,et al. 2020. Development of the Earth climate system model in China and its simulation and prediction. Acta Meteor Sinica,78(3):332-350 (in Chinese) doi: 10.11676/qxxb2020.029
    [7] Adler R F,Huffman G J,Chang A,et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol,4(6):1147-1167 doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
    [8] Albrecht B A. 1989. Aerosols,cloud microphysics,and fractional cloudiness. Science,245(4923):1227-1230 doi: 10.1126/science.245.4923.1227
    [9] Bacmeister J T,Wehner M F,Neale R B,et al. 2014. Exploratory high-resolution climate simulations using the community atmosphere model (CAM). J Climate,27(9):3073-3099 doi: 10.1175/JCLI-D-13-00387.1
    [10] Chandrakar K K,Cantrell W,Kostinski A B,et al. 2018. Dispersion aerosol indirect effect in turbulent clouds:Laboratory measurements of effective radius. Geophys Res Lett,45(19):10738-10745
    [11] Chuang C C,Kelly J T,Boyle J S,et al. 2012. Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in short-range weather forecasts during the May 2003 aerosol IOP. J Adv Model Earth Syst,4(9):M09001
    [12] Demory M E,Vidale P L,Roberts M J,et al. 2014. The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn,42(7-8):2201-2225 doi: 10.1007/s00382-013-1924-4
    [13] Glotfelty T,Alapaty K,He J,Hawbecker P,et al. 2020. Studying scale dependency of aerosol-cloud interactions using multiscale cloud formulations. J Atmos Sci,77(11):3847-3868 doi: 10.1175/JAS-D-19-0203.1
    [14] Grandey B S,Rothenberg D,Avramov A,et al. 2018. Effective radiative forcing in the aerosol-climate model CAM5.3-MARC-ARG. Atmos Chem Phys,18(21):15783-15810 doi: 10.5194/acp-18-15783-2018
    [15] Hack J J,Caron J M,Danabasoglu G,et al. 2006. CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution. J Climate,19(11):2267-2289 doi: 10.1175/JCLI3764.1
    [16] Iacono M J,Delamere J S,Mlawer E J,et al. 2008. Radiative forcing by long-lived greenhouse gases:calculations with the AER radiative transfer models. J Geophys Res,113(D13):D13103 doi: 10.1029/2008JD009944
    [17] Lamarque J F,Bond T C,Eyring V,et al. 2010. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:Methodology and application. Atmos Chem Phys,10(15):7017-7039 doi: 10.5194/acp-10-7017-2010
    [18] Lee H,Baik J J. 2017. A physically based autoconversion parameterization. J Atmos Sci,74(5):1599-1616 doi: 10.1175/JAS-D-16-0207.1
    [19] Li J,Yu R C,Yuan W H,et al. 2015. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J Adv Model Earth Syst,7(2):774-790 doi: 10.1002/2014MS000414
    [20] Liu X,Easter R C,Ghan S J,et al. 2012. Toward a minimal representation of aerosols in climate models:Description and evaluation in the Community Atmosphere Model CAM5. Geosci Model Dev,5(3):709-739 doi: 10.5194/gmd-5-709-2012
    [21] Lohmann U,Feichter J. 2005. Global indirect aerosol effects:A review. Atmos Chem Phys,5(3):715-737 doi: 10.5194/acp-5-715-2005
    [22] Ma P L, Rasch P J, Wang M H, et al. 2015. How does increasing horizontal resolution in a global climate model improve the simulation of aerosol-cloud interactions? Geophys Res Lett, 42(12): 5058-5065
    [23] Michibata T,Takemura T. 2015. Evaluation of autoconversion schemes in a single model framework with satellite observations. J Geophys Res,120(18):9570-9590 doi: 10.1002/2015JD023818
    [24] Morrison H,Gettelman A. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model,version 3 (CAM3). Part I:Description and numerical tests. J Climate,21(15):3642-3659 doi: 10.1175/2008JCLI2105.1
    [25] Neale R B, Chen C C, Gettelman A, et al. 2010. Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR/TN-486C+STR. Boulder, CO, USA: National Center for Atmospheric Research
    [26] Ramanathan V, Crutzen P J, Kiehl J T, et al. 2001: Aerosols, climate, and the hydrological cycle. Science, 294(5549): 2119-2124
    [27] Twomey S. 1977. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci,34(7):1149-1152 doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    [28] Wang M Q,Peng Y R,Liu Y G,et al. 2020. Understanding cloud droplet spectral dispersion effect using empirical and semi-analytical parameterizations in NCAR CAM5.3. Earth Space Sci,7(8):e2020EA001276
    [29] Wang Y,Niu S J,Lu C S,et al. 2019. An observational study on cloud spectral width in North China. Atmosphere,10(3):109 doi: 10.3390/atmos10030109
    [30] Xie X N,Zhang H,Liu X D,et al. 2017. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1:Impacts on aerosol indirect effects. Atmos Chem Phys,17(9):5877-5892 doi: 10.5194/acp-17-5877-2017
    [31] Xie X N,Zhang H,Liu X D,et al. 2018. Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1. Adv Atmos Sci,35(2):248-259 doi: 10.1007/s00376-017-7083-5
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  15
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 录用日期:  2022-06-22
  • 修回日期:  2022-01-05
  • 网络出版日期:  2022-01-06

目录

    /

    返回文章
    返回