留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境及生态因子对黄土高原典型农田生态系统鲍恩比的影响研究

任雪塬 张强 岳平 杨金虎 王胜

任雪塬,张强,岳平,杨金虎,王胜. 2022. 环境及生态因子对黄土高原典型农田生态系统鲍恩比的影响研究. 气象学报,80(2):304-321 doi: 10.11676/qxxb2022.015
引用本文: 任雪塬,张强,岳平,杨金虎,王胜. 2022. 环境及生态因子对黄土高原典型农田生态系统鲍恩比的影响研究. 气象学报,80(2):304-321 doi: 10.11676/qxxb2022.015
Ren Xueyuan, Zhang Qiang, Yue Ping, Yang Jinhu, Wang Sheng. 2022. Impacts of environmental factors on Bowen ratio in typical farmland ecosystem in the Loess Plateau. Acta Meteorologica Sinica, 80(2):304-321 doi: 10.11676/qxxb2022.015
Citation: Ren Xueyuan, Zhang Qiang, Yue Ping, Yang Jinhu, Wang Sheng. 2022. Impacts of environmental factors on Bowen ratio in typical farmland ecosystem in the Loess Plateau. Acta Meteorologica Sinica, 80(2):304-321 doi: 10.11676/qxxb2022.015

环境及生态因子对黄土高原典型农田生态系统鲍恩比的影响研究

doi: 10.11676/qxxb2022.015
基金项目: 国家自然科学基金项目(41630426、41975016、41705075、41875020)和甘肃省基础研究创新群体项目(20JR5RA121)
详细信息
    作者简介:

    任雪塬,主要从事陆气相互作用研究。E-mail:rxy_atsc@163.com

    通讯作者:

    岳平,主要从事陆气相互作用研究。E-mail: jqyueping@126.com

  • 中图分类号: P404

Impacts of environmental factors on Bowen ratio in typical farmland ecosystem in the Loess Plateau

  • 摘要: 鲍恩比能够综合反映陆面气候状态的物理特性,是有效刻画生态系统水热分配的关键参数之一。本研究利用安装在定西和庆阳的涡动相关系统开展了黄土高原半干旱和半湿润农田生态系统能量分配特征观测试验,研究了生态环境因子对鲍恩比的影响机理,揭示了干、湿条件下生理生态因子对水热交换的响应规律。结果表明,处于半干旱区的定西年内感热通量是可利用能量的主要消耗项,即使在降水较为集中的季风期,其鲍恩比依旧在1附近波动。对于半湿润地区的庆阳而言,夏季潜热通量在能量分配中占主导地位(鲍恩比平均为0.71),其余三季感热在能量分配中起支配作用(鲍恩比为1.15—5.85)。从影响陆面水热交换的气象因子来看,鲍恩比随饱和水汽压差的增大而增大,随降水量和土壤湿度的增大而显著减小。干旱条件下,鲍恩比与半湿润区饱和水汽压差的相关更高(R2=0.44);湿润条件下,则与半干旱区的饱和水汽压差相关更好(R2=0.38),且生长季半干旱区的鲍恩比为半湿润区的1.5倍。半湿润区干、湿条件下降水量与鲍恩比均显著相关,干旱条件下R2达到0.79;但半干旱区仅在干旱条件下降水量与鲍恩比存在显著的相关(R2=0.40)。土壤含水量在半湿润区与鲍恩比的相关更显著,且干旱条件下鲍恩比随土壤含水量的降低而增大的幅度更大。从影响生长季鲍恩比的生态因子来看,Priestley-Taylor系数与鲍恩比满足幂函数规律,在黄土高原农田生态系统具有显著的相关,半湿润区和半干旱区R2分别为0.62和0.72。另外,黄土高原农田生态系统鲍恩比随归一化植被指数的增大而减小,半湿润区二者关系更显著(R2=0.40),但半干旱区鲍恩比对归一化植被指数变化的响应更迅速。冠层气孔导度与鲍恩比呈负指数关系,半干旱区鲍恩比随冠层气孔导度的增大而减小的趋势比半湿润区更明显。该研究对揭示黄土高原典型农田生态系统陆面特征及改进陆面过程参数化关系具有重要参考意义。

     

  • 图 1  研究区地理位置 (星号为定西和庆阳站)

    Figure 1.  Geographical location of the study area (stars denote Dingxi and Qingyang stations)

    图 2  定西 (a) 和庆阳 (b) 站生态环境因子的季节和年际变化

    Figure 2.  Seasonal and interannual variations of eco-environmental factors in Dingxi (a) and Qingyang (b) stations

    图 3  能量平衡残差频率分布概率密度曲线

    Figure 3.  Frequency distribution and probability density curve of energy balance residual

    图 4  定西和庆阳能量通量年平均日变化 (a. 净辐射,b. 潜热通量,c. 感热通量,d. 土壤热通量)

    Figure 4.  Annual averages of diurnal variations of energy fluxes in Dingxi and Qingyang (a. Rn,b. LE,c. H,d. G

    图 5  能量通量季节平均日变化曲线 (a. 净辐射,b. 潜热通量,c. 感热通量,d. 土壤热通量;1—4分别表示春季、夏季、秋季和冬季)

    Figure 5.  Seasonal average diurnal variation curves of energy flux (a. Rn,b. LE,c. H,d. G;1—4 represents spring,summer,autumn and winter, respectively)

    图 6  定西 (a) 和庆阳 (b) 能量分量的季节变化

    Figure 6.  Seasonal variations of energy components in Dingxi (a) and Qingyang (b)

    图 7  生长季定西和庆阳感热、潜热通量的累积分数曲线 (a) 及箱线图 (b)

    Figure 7.  Cumulative fraction curves (a) and box plots (b) of sensible and latent heat fluxes in Dingxi and Qingyang during the growing season

    图 8  定西 (a) 和庆阳 (b) 鲍恩比季节变化及 (c) 多年季节平均

    Figure 8.  Seasonal variation of Bowen ratio in Dingxi (a) and Qingyang(b) and multi-year seasonal average (c)

    图 11  定西 (a) 和庆阳 (b) 各影响因子的通径图 (实线箭头和虚线箭头分别代表正、负相关)

    Figure 11.  Path diagram of the impact factors in Dingxi (a) and Qingyang (b) (solid arrows and dotted arrows indicate positive and negative correlations,respectively)

    图 12  月尺度上归一化表面阻抗与鲍恩比 (a) 和Priestley-Taylor系数 (b) 的关系(灰色点线代表为两站的总体拟合关系)

    Figure 12.  Relationships between normalized surface impedance ($R_{\rm s}^* $) and (a) Bowen ratio,(b) $ \alpha $ on monthly time scale (gray dotted line represents the overall trend of the above relationships)

    表  1  实验仪器型号及安装高度

    Table  1.   Experimental instrument type and installation height

    仪器型号安装高度
    定西站庆阳站
    气体分析仪Li-7500,Li-Cor2.5 m3 m
    三维超声风速仪CSAT-3,Campbell2.5 m3 m
    温、湿度计HMP45C-L,Vaisala1、2、4、10、16 m2、4、8、18 m
    净辐射计CNR4,Kipp & Zone1.5 m1.5 m
    热流板HFP01SC-L50,Hukseflux2 cm1、2.5 cm
    土壤温度探头STP01-L50,Hukseflux0、5、10、20、30、40、50、80 cm0、5、10、20、40、60、90 cm
    水含量反射计CS616-L,Campbell10、20、40、50、80 cm5、10、20、60、90 cm
    下载: 导出CSV

    表  2  本研究中使用的数据集

    Table  2.   Details regarding the datasets used in this study

    数据类型数据来源 观测要素  资料时段  观测地点  
     陆面综合观测试验资料农业气象试验站湍流通量,近地层温、湿、风梯度,辐射,土壤
    温、湿梯度等
    2016年8月—2019年5月
    2011年7月—2019年6月
    2011年7月—2012年7月
    定西
    2013年5月—10月
    2015年12月—2016年5月
    2018年5月—2019年7月
    庆阳
     常规气象观测资料中国气象数据网地温、气温、气压、
    降水等
    2011年7月—2019年6月
    1980年1月—2010年12月
    定西、西峰
     卫星遥感观测资料NASA归一化植被指数2011年7月—2019年6月
    (时间分辨率为16 d)
    中国区域内
    (空间分辨率为250 m)
    下载: 导出CSV

    表  3  能量通量和环境要素

    Table  3.   Energy fluxes and environmental factors

    站点时间Sr*
    (MJ/m2
    Rn
    (MJ/m2
    H
    (MJ/m2
    LE
    (MJ/m2
    G
    (MJ/m2
    βTa
    (℃)
    VPD
    (kPa)
    雨量
    (mm)
    ET*
    (mm)
    αNDVI
    定西全年20168544.03415.41698.6 853.2388.43.811.80.9275.9348.10.50.3
    20178420.83324.01690.61020.2461.23.311.40.9405.4416.20.70.3
    20188590.93699.11353.81298.5267.92.610.70.8478.9529.80.60.3
    20198340.73547.31587.41014.8263.44.111.00.8405.4414.00.50.3
    生长季20165871.32605.41176.0 724.0350.92.518.51.2262.7295.40.60.4
    20175782.22548.81136.7 877.0392.62.318.01.2363.8357.80.70.4
    20185900.53028.6 916.91165.6281.81.218.71.0421.0475.60.70.4
    20195684.42735.01072.2 903.9258.12.217.81.0371.0368.80.60.4
    庆阳全年20115827.22984.91044.41501.5168.82.011.60.7614.5612.60.70.4
    20125918.92753.0 792.51579.5119.91.912.00.7493.6644.40.70.4
    20136084.02972.41050.21572.2156.11.911.90.7745.8641.50.70.5
    20156212.73141.81111.11575.0155.12.011.60.7493.7642.60.70.5
    20166015.23084.71165.01554.0166.21.911.50.7507.9634.00.70.5
    20186238.92921.81123.01427.5170.82.810.50.6687.2582.40.50.4
    20195914.02915.4 997.31316.0140.93.711.00.7545.4536.90.60.4
    生长季20114034.22246.9 668.71284.2177.20.718.30.9498.7524.00.80.5
    20123946.82092.8 485.91342.7147.70.819.71.0448.7547.80.90.5
    20134060.02234.4 619.21379.3175.10.618.70.9724.3562.70.90.6
    20153962.72250.9 631.61335.1175.10.718.20.9446.8544.70.80.6
    20163989.32200.7 667.91317.5181.70.818.20.9482.1537.50.80.6
    20184272.12377.4 690.41248.7188.80.917.50.8637.1509.50.60.5
    20194027.32219.4 648.51213.9163.30.818.10.9506.0495.30.80.5
     *:Sr为短波辐射,ET为蒸散量。
    下载: 导出CSV

    表  4  试验站地表能量平衡特征

    Table  4.   Characteristics of energy balance in different regions

    站点白天夜间全天
    样本数普通最小二乘法能量
    平衡比
    样本数普通最小二乘法能量
    平衡比
    样本数普通最小二乘法能量
    平衡比
    kR2kR2kR2
    定西105160.650.680.89111900.180.050.03403500.760.810.68
    庆阳 51490.710.710.81 77730.110.050.49240640.730.850.60
    下载: 导出CSV

    表  5  能量分量年平均日变化峰值和日均值

    Table  5.   Annual average daily variation peak and daily average value of energy components

    站点Rn (W/m2LE (W/m2H (W/m2G (W/m2
    峰值均值峰值均值峰值均值峰值均值
    定西334.1067.29 64.1420.95120.2928.98157.886.08
    庆阳348.3771.74125.8341.41122.3228.50 96.931.62
    下载: 导出CSV

    表  6  能量通量季节平均日峰值和日均结果

    Table  6.   Seasonal averages of peak and daily average values of energy fluxes

    能量分量(W/m2春季夏季秋季冬季
    定西庆阳定西庆阳定西庆阳定西庆阳
    Rn峰值345.02376.71440.16460.16362.38348.03226.45240.88
    均值 67.73 77.14109.87119.84 78.76 75.02 25.34 26.20
    LE峰值 39.31 82.61103.10169.41101.19168.67 22.55 21.63
    均值 11.77 25.70 36.00 74.11 32.54 58.31 5.23 6.64
    H峰值148.75162.54143.10112.81107.21110.68 93.27118.66
    均值 34.85 34.02 41.31 30.49 28.59 25.33 17.93 21.93
    G峰值173.24109.18214.49125.82124.15 97.69136.16 56.19
    均值 10.34 6.68 20.07 8.67 1.24 −2.29 −3.29 −6.94
    下载: 导出CSV
  • [1] 杜群, 刘辉志, 冯健武等. 2014. 数据填补及能量闭合对半干旱区生态系统年净碳交换的影响. 中国科学: 地球科学, 44(5): 989-1001.

    Du Q, Liu H Z, Feng J W, et al. 2014. Effects of different gap filling methods and land surface energy balance closure on annual net ecosystem exchange in a semiarid area of China. Sci China Earth Sci, 57(6): 1340-1351
    [2] 刘树华,刘和平. 1996. 不同下垫面湍流输送计算方法的研究. 应用气象学报,7(2):229-237

    Liu S H,Liu H P. 1996. A study on the calculation method of turbulent transfer from different underlying surfaces. Quart J Appl Meteor,7(2):229-237 (in Chinese)
    [3] 刘树华,茅宇豪,胡非等. 2009. 不同下垫面湍流通量计算方法的比较研究. 地球物理学报,52(3):616-629

    Liu S H,Mao Y H,Hu F,et al. 2009. A comparative study of computing methods of turbulent fluxes on different underling surfaces. Chinese J Geophy,52(3):616-629 (in Chinese)
    [4] 王欣,文军,韦志刚等. 2009. 中国黄土高原塬区表层土壤水分盈缺状况的研究. 高原气象,28(3):530-538

    Wang X,Wen J,Wei Z G,et al. 2009. Study on water deficit of the topsoil over the Chinese Loess Plateau mesa region. Plateau Meteor,28(3):530-538 (in Chinese)
    [5] 岳平, 张强, 赵文等. 2015. 黄土高原半干旱草地生长季干湿时段环境因子对陆面水、热交换的影响. 中国科学: 地球科学, 45(8): 1229-1242.

    Yue P, Zhang Q, Zhao W, et al. 2015. Influence of environmental factors on land-surface water and heat exchange during dry and wet periods in the growing season of semiarid grassland on the Loess Plateau. Sci China Earth Sci, 58(11): 2002-2014
    [6] 张海宏,肖宏斌,祁栋林等. 2017. 青藏高原湿地土壤冻结、融化期间的陆面过程特征. 气象学报,75(3):481-491 doi: 10.11676/qxxb2017.034

    Zhang H H,Xiao H B,Qi D L,et al. 2017. Features of land surface process over wetland at Tibetan Plateau during soil freezing and thawing periods. Acta Meteor Sinica,75(3):481-491 (in Chinese) doi: 10.11676/qxxb2017.034
    [7] 张璐,黄倩,张宏昇等. 2021. 干湿地表的湍流特征及其对深对流影响的大涡模拟. 气象学报,79(4):659-673 doi: 10.11676/qxxb2021.037

    Zhang L,Huang Q,Zhang H S,et al. 2021. Large eddy simulation of turbulence effects on deep-convection triggering over dry and wet surfaces. Acta Meteor Sinica,79(4):659-673 (in Chinese) doi: 10.11676/qxxb2021.037
    [8] 张强,王胜. 2008. 关于黄土高原陆面过程及其观测试验研究. 地球科学进展,23(2):167-173 doi: 10.3321/j.issn:1001-8166.2008.02.007

    Zhang Q,Wang S. 2008. On land surface processes and its experimental study in Chinese Loess Plateau. Adv Earth Sci,23(2):167-173 (in Chinese) doi: 10.3321/j.issn:1001-8166.2008.02.007
    [9] 张强,孙昭萱,王胜. 2011. 黄土高原定西地区陆面物理量变化规律研究. 地球物理学报,54(7):1727-1737 doi: 10.3969/j.issn.0001-5733.2011.07.005

    Zhang Q,Sun Z X,Wang S. 2011. Analysis of variation regularity of land-surface physical quantities over Dingxi Region of the Loess Plateau. Chinese J Geophys,54(7):1727-1737 (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.07.005
    [10] 张强, 李宏宇, 赵建华. 2012. 垂直平流输送和土壤热储存补偿对黄土高原地表能量平衡的修正. 中国科学: 地球科学, 42(1): 42-51.

    Zhang Q, Li H Y, Zhao J H. 2012. Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau. Sci China Earth Sci, 55(4): 580-589
    [11] 张强, 张良, 黄菁等. 2014. 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系. 中国科学: 地球科学, 44(9): 2062-2076.

    Zhang Q, Zhang L, Huang J, et al. 2014. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment. Sci China Earth Sci, 57(9): 2135-2147
    [12] Arain M A,Black T A,Barr A G,et al. 2003. Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrol Process,17(18):3581-3600 doi: 10.1002/hyp.1348
    [13] Baldocchi D D,Hincks B B,Meyers T P. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology,69(5):1331-1340 doi: 10.2307/1941631
    [14] Biudes M S,Vourlitis G L,Machado N G,et al. 2015. Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso,Brazil. Agri Forest Meteor,202:112-124 doi: 10.1016/j.agrformet.2014.12.008
    [15] Blanken P D,Black T A,Yang P C,et al. 1997. Energy balance and canopy conductance of a boreal aspen forest:Partitioning overstory and understory components. J Geophys Res,102(D24):28915-28927 doi: 10.1029/97JD00193
    [16] Chen S P,Chen J Q,Lin G H,et al. 2009. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agri Forest Meteor,149(11):1800-1809 doi: 10.1016/j.agrformet.2009.06.009
    [17] Chen X,Yu Y,Chen J B,et al. 2016. Seasonal and interannual variation of radiation and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau,northwestern China. Atmos Res,176-177:240-253 doi: 10.1016/j.atmosres.2016.03.003
    [18] Cho J,Oki T,Yeh P J F,et al. 2012. On the relationship between the Bowen ratio and the near-surface air temperature. Theor Appl Climatol,108(1-2):135-145 doi: 10.1007/s00704-011-0520-y
    [19] Da Rocha H R,Goulden M L,Miller S D,et al. 2004. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl,14(sp4):22-32 doi: 10.1890/02-6001
    [20] Ding R S,Kang S Z,Li F S,et al. 2013. Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching. Agri Forest Meteor,168:140-148 doi: 10.1016/j.agrformet.2012.08.003
    [21] Dolman A J,Gash J H C,Roberts J,et al. 1991. Stomatal and surface conductance of tropical rainforest. Agri Forest Meteor,54(2-4):303-318 doi: 10.1016/0168-1923(91)90011-E
    [22] Falge E,Baldocchi D,Olson R,et al. 2001. Gap filling strategies for long term energy flux data sets. Agri Forest Meteor,107(1):71-77 doi: 10.1016/S0168-1923(00)00235-5
    [23] Feng Y,Gong D Z,Mei X R,et al. 2017. Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China. Agric Water Manage,191:193-206 doi: 10.1016/j.agwat.2017.06.009
    [24] Foken T,Wimmer F,Mauder M,et al. 2006. Some aspects of the energy balance closure problem. Atmos Chem Phys,6(12):4395-4402 doi: 10.5194/acp-6-4395-2006
    [25] Fraedrich K,Kleidon A,Lunkeit F. 1999. A green planet versus a desert world:Estimating the effect of vegetation extremes on the atmosphere. J Climate,12(10):3156-3163 doi: 10.1175/1520-0442(1999)012<3156:AGPVAD>2.0.CO;2
    [26] Gao X R,Sun M,Luan Q H,et al. 2020. The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Sci Total Environ,708:135111 doi: 10.1016/j.scitotenv.2019.135111
    [27] Gerken T,Bromley G T,Stoy P C. 2018. Surface moistening trends in the northern North American Great Plains increase the likelihood of convective initiation. J Hydrometeorol,19(1):227-244 doi: 10.1175/JHM-D-17-0117.1
    [28] Hossen S,Mano M,Miyata A,et al. 2012. Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrol Process,26(9):1311-1320 doi: 10.1002/hyp.8232
    [29] Huang J P,Yu H P,Guan X D,et al. 2016. Accelerated dryland expansion under climate change. Nat Climate Chang,6(2):166-171 doi: 10.1038/nclimate2837
    [30] Kang M,Zhang Z,Noormets A,et al. 2015. Energy partitioning and surface resistance of a poplar plantation in northern China. Biogeosciences,12(14):4245-4259 doi: 10.5194/bg-12-4245-2015
    [31] Kumagai T,Saitoh T M,Sato Y,et al. 2004. Transpiration,canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak,Borneo:Dry spell effects. J Hydrol,287(1-4):237-251 doi: 10.1016/j.jhydrol.2003.10.002
    [32] Lei H M,Yang D W. 2010. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agri Forest Meteor,150(4):581-589 doi: 10.1016/j.agrformet.2010.01.022
    [33] Li Z Q,Yu G R,Wen X F,et al. 2005. Energy balance closure at ChinaFLUX sites. Sci China Earth Sci,48(S1):51-62
    [34] Lu Y Q,Kueppers L M. 2012. Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3:Community Land Model 3.5). J Geophys Res,117(D6):D06111
    [35] Majozi N P,Mannaerts C M,Ramoelo A,et al. 2017. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza,Kruger National Park,South Africa. Hydrol Earth Syst Sci,21(7):3401-3415 doi: 10.5194/hess-21-3401-2017
    [36] McNaughton K G,Spriggs T W. 1986. A mixed-layer model for regional evaporation. Bound-Layer Meteor,34(3):243-262 doi: 10.1007/BF00122381
    [37] Monteith J L, Unsworth M H. 1990. Principles of Environmental Physics. 2nd ed. London: Edward Arnold
    [38] Perez P J,Castellvi F,Martínez-Cob A. 2008. A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux. Agri Forest Meteor,148(1):25-37 doi: 10.1016/j.agrformet.2007.08.015
    [39] Qiu R J,Liu C W,Cui N B,et al. 2019. Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agric Water Manage,224:105755 doi: 10.1016/j.agwat.2019.105755
    [40] Rahman M,Zhang W C,Wang K. 2019. Assessment on surface energy imbalance and energy partitioning using ground and satellite data over a semi-arid agricultural region in north China. Agric Water Manage,213:245-259 doi: 10.1016/j.agwat.2018.10.032
    [41] Rana G,Katerji N,Mastrorilli M,et al. 1997. Validation of a model of actual evapotranspiration for water stressed soybeans. Agri Forest Meteor,86(3/4):215-224 doi: 10.1016/S0168-1923(97)00009-9
    [42] Rodrigues T R,Vourlitis G L,de A Lobo F,et al. 2014. Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso,Brazil. J Geophys Res,119(1):1-13
    [43] Sánchez J M,Caselles V,Rubio EM. 2010. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland. Hydrol Earth Syst Sci,14(8):1487-1497 doi: 10.5194/hess-14-1487-2010
    [44] Sun M,Dong Q G,Jiao M Y,et al. 2018. Estimation of actual evapotranspiration in a semiarid region based on grace gravity satellite data:A case study in Loess Plateau. Remote Sens,10(12):2032 doi: 10.3390/rs10122032
    [45] Tian F Q,Yang P J,Hu H C,et al. 2017. Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China. Agric Water Manage,179:110-121 doi: 10.1016/j.agwat.2016.06.029
    [46] Twine T E,Kustas W P,Norman J M,et al. 2000. Correcting eddy-covariance flux underestimates over a grassland. Agri Forest Meteor,103(3):279-300 doi: 10.1016/S0168-1923(00)00123-4
    [47] Wang Y,Wang C,Zhang Q. 2021. Synergistic effects of climatic factors and drought on maize yield in the east of Northwest China against the background of climate change. Theor Appl Climatol,143(3):1017-1033
    [48] Wilson K B,Baldocchi D D,Aubinet M,et al. 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour Res,38(12):1294
    [49] Wolf A,Saliendra N,Akshalov K,et al. 2008. Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system. Agri Forest Meteor,148(6-7):942-952 doi: 10.1016/j.agrformet.2008.01.005
    [50] Yang Z S,Zhang Q,Hao X C,et al. 2019a. Changes in evapotranspiration over global semiarid regions 1984-2013. J Geophys Res,124(6):2946-2963 doi: 10.1029/2018JD029533
    [51] Yang Z S,Zhang Q,Hao X C. 2019b. Environmental and biological controls on monthly and annual evapotranspiration in China's Loess Plateau. Theor Appl Climatol,137(3-4):1675-1692 doi: 10.1007/s00704-018-2701-4
    [52] Yuan G H,Zhang L,Liang J N,et al. 2017. Understanding the partitioning of the available energy over the semi-arid areas of the Loess Plateau,China. Atmosphere,8(5):87 doi: 10.3390/atmos8050087
    [53] Yue P,Zhang Q,Niu S J,et al. 2011. Effects of the soil heat flux estimates on surface energy balance closure over a semi-arid grassland. Acta Meteor Sinica,25(6):774-782 doi: 10.1007/s13351-011-0608-4
    [54] Yue P,Zhang Q,Zhao W,et al. 2015. Influence of environmental factors on land-surface water and heat exchange during dry and wet periods in the growing season of semiarid grassland on the Loess Plateau. Sci China Earth Sci,58(11):2002-2014 doi: 10.1007/s11430-015-5133-3
    [55] Yue P,Zhang Q,Yang Y,et al. 2018. Seasonal and inter-annual variability of the Bowen smith ratio over a semi-arid grassland in the Chinese Loess Plateau. Agri Forest Meteor,252:99-108 doi: 10.1016/j.agrformet.2018.01.006
    [56] Yue P,Zhang Q,Zhang L,et al. 2020. Biometeorological effects on carbon dioxide and water-use efficiency within a semiarid grassland in the Chinese Loess Plateau. J Hydrol,590:125520 doi: 10.1016/j.jhydrol.2020.125520
    [57] Zhang Q,Yang Z S,Hao X C,et al. 2019. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China. Climate Dyn,52(7):3891-3903
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  25
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 录用日期:  2022-02-28
  • 修回日期:  2021-11-22
  • 网络出版日期:  2021-12-23

目录

    /

    返回文章
    返回