留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逐时观测的1971—2010年中国大陆雷暴气候特征

张恒进 郑永光

张恒进,郑永光. 2022. 基于逐时观测的1971—2010年中国大陆雷暴气候特征. 气象学报,80(1):1-13 doi: 10.11676/qxxb2022.004
引用本文: 张恒进,郑永光. 2022. 基于逐时观测的1971—2010年中国大陆雷暴气候特征. 气象学报,80(1):1-13 doi: 10.11676/qxxb2022.004
Zhang Hengjin, Zheng Yongguang. 2022. Thunderstorm climatology over mainland China based on hourly observations during 1971—2010. Acta Meteorologica Sinica, 80(1):1-13 doi: 10.11676/qxxb2022.004
Citation: Zhang Hengjin, Zheng Yongguang. 2022. Thunderstorm climatology over mainland China based on hourly observations during 1971—2010. Acta Meteorologica Sinica, 80(1):1-13 doi: 10.11676/qxxb2022.004

基于逐时观测的1971—2010年中国大陆雷暴气候特征

doi: 10.11676/qxxb2022.004
基金项目: 国家重点研发计划项目(2018YFC1507504、2017YFC1502003)、国家自然科学基金项目(42175017)
详细信息
    作者简介:

    张恒进,主要从事强对流和强降水等中小尺度天气研究。E-mail:1659067498@qq.com

    通讯作者:

    郑永光,主要从事强对流和强降水等中小尺度天气研究。E-mail:zhengyg@cma.gov.cn

  • 中图分类号: P446

Thunderstorm climatology over mainland China based on hourly observations during 1971—2010

  • 摘要: 目前尚没有研究给出中国大陆长时间序列的小时分辨率雷暴气候特征。基于1971—2010年全国796个国家级基本基准站逐时雷暴观测数据,给出中国逐时雷暴的时空演变和持续时间等气候分布特征,获得了一些新的事实。中国总体年平均雷暴时数与雷暴日数空间分布形态较为接近,但年平均雷暴日数高值区的青藏高原地区不同,其年平均雷暴时数较小,表明其对流活动持续时间比平原地区更短;还发现,年平均雷暴日数和时数高值区的年相对变率明显小于低值区。在四个季节中,冬季雷暴时数最少,且多发于前半夜,夜雷暴在全天雷暴时数中的占比最高;而夏季夜雷暴时数在四季中最多,但其在全天雷暴时数中的占比最低;而四川盆地夜雷暴全年都很显著。各个站点雷暴时数日变化峰值以下午最多,上午最少,前半夜多于后半夜。对于以胡焕庸线为界以南以东地区,受东亚夏季风影响,雷暴日的平均雷暴发生时数不低于3 h,而该线以北以西地区则显著小于3 h。对于不同的雷暴持续时数,中国总体和各个区域持续2 h的雷暴时数为最多。中国总体和各个区域雷暴时数的年代际变化整体呈现递减趋势,但2000 年以来,夜间雷暴时数明显增加。中国总体雷暴时数的明显减少主要归因于下午时段雷暴时数的明显减少,2000 年以来中国总体雷暴时数的增加趋势是由于夜间时段雷暴时数增加而导致。

     

  • 图  1  1971—2010年选取的796个有效观测年份为40年的基本基准站分布及中国大陆区域划分 (灰色阶为地形高度,单位:m;红色圆点表示站点;中国大陆划分为7个区域:中国东北地区 (NEC)、华北地区 (NC)、长江中下游地区 (YRB)、华南地区 (SC)、西南地区 (SWC)、西藏及其附近地区 (TB) 以及西北地区 (NWC);蓝色方框区域用于研究年代际变化,分别为区域1—5)

    Figure  1.  The distribution of 796 stations with observations of 40 years and the regional division of mainland China during 1971—2010 (Shaded areas show the terrain height,unit: m; and red dots represent the stations; Mainland China is divided into 7 regions:Northeast China (NEC),North China (NC),the middle and lower reaches of the Yangtze River basin (YRB),South China (SC),Southwest China (SWC),Tibet (TB),and Northwest China (NWC); blue boxes indicate areas for the study of interdecadal changes,they are areas 1—5 respectively)

    图  2  1971—2010年中国 (a) 年平均雷暴日数 (单位:d) 、(b) 年平均雷暴时数 (单位:h)、 (c) 雷暴日数年相对变率 (单位:%) 和(d) 雷暴时数年相对变率 (单位:%)(灰色区域为无站点覆盖区域,b和d中标注的区域1—5与图1中标注相同)

    Figure  2.  (a) Annual average thunderstorm days (unit:d),(b) annual average thunderstorm hours (unit:h),(c) annual relative variability of thunderstorm days (unit:%),and (d) annual relative variability of thunderstorm hours (unit:%) over China during 1971—2010 (Areas shaded in gray represent areas without observations; the areas 1—5 marked in b and d are the same as those marked in Fig.1)

    图  3  1971—2010年中国 (a) 雷暴日的平均雷暴时数 (单位:h) 和 (b) 连续雷暴观测下的不同持续时间雷暴站点年平均发生时数统计 (a. 灰色区域为无站点覆盖区域;b. 左侧Y轴和蓝色柱状图表示雷暴发生时数 (单位:h),右侧Y轴和红色实线表示持续性雷暴发生时数占总雷暴发生时数的比 (单位:%) )

    Figure  3.  (a) The number of thunderstorm hours per thunderstorm day (unit:h),(b) annual average hours of thunderstorms with different durations per station under continuous thunderstorm observation condition over China during 1971—2010 (a. areas shaded in gray represent areas without observations; b. the left Y-axis and blue histogram in b represent the hours of thunderstorm (unit:h),while the right Y-axis and red solid line represent the ratio of continuous thunderstorm hours to total thunderstorm hours (unit:%))

    图  4  1971—2010年中国 (a) 春季、 (b) 夏季、 (c) 秋季、 (d) 冬季年平均雷暴时数 (色阶,单位:h) 及其夜雷暴时数占比 (等值线,单位:%)(灰色区域表示站点夜间无雷暴或无站点覆盖)

    Figure  4.  Annual average thunderstorm hours (color shaded,unit: h) and proportion of night thunderstorm hours (contour,unit:%) in (a) spring,(b) summer,(c) fall,and (d) winter over China during 1971—2000 (Areas shaded in gray represent areas with no night thunderstorms or areas without observations)

    图  5  1971—2010年 (a) 中国所有站点月平均雷暴时数 (左轴) 分布 (柱状图,单位:h) 以及日间与夜间雷暴时数在全天雷暴时数中占比 (右轴) 的逐月变化 (折线图;单位:%) , (b) 中国总体和不同区域全天站点平均逐候雷暴时数分布 (b1,单位:h) 和夜间雷暴时数逐候的占比 (b2,单位:%)

    Figure  5.  (a) Distribution of monthly average thunderstorm hours (left Y-axis) at all stations in China (histogram,unit:h) and monthly variation of the proportion (right Y-axis) of daytime and nighttime thunderstorm hours in the whole day thunderstorm hours (broken line diagram,unit:%),(b) distribution of average thunderstorm hours per pentad ((b1,unit:h) and the proportion of night thunderstorm hours per pentad (b2,unit:%) over China and over different regions during 1971—2010

    图  6  不同季节各个站点的雷暴日变化峰值时间 (a. 绿色和蓝色箭头分别表示冬季和春季站点峰值时间,红色箭头表示站点冬春季峰值时间相同;b. 绿色和蓝色箭头分别表示夏季和秋季站点峰值时间,红色箭头表示站点夏秋季峰值时间相同;峰值时间为各个站点雷暴日变化主峰值第一次出现时间)

    Figure  6.  Diurnal peaks of thunderstorms at each station in different seasons (a. the green and blue arrows represent the diurnal peaks of the station in winter and spring respectively,and the red arrow indicates that the peaks of the station in winter and spring are the same;b. the green and blue arrows represent the diurnal peaks of the station in summer and fall respectively,and the red arrow indicates that the peaks of the station in summer and fall are the same;the arrow at each station represents the time when the peak of thunderstorm diurnal variation first appears)

    图  7  1971—2010年中国和各区域(a)全天和 (b)夜间站点年平均雷暴时数标准化数值逐年变化 (图例右侧数值为各区域40年站点年平均雷暴时数,其标准化值对应Y轴数值1.0 (灰虚线))

    Figure  7.  Annual variations of standardized (a) all day and (b) night average thunderstorm hours per station over China and over different regions during 1971—2010 (The values on the right of the legend are the annual average hours of thunderstorm of stations in regions for 40 years,and their standardized values correspond to the value 1.0 on the Y-axis (dashed gray lines))

    图  8  1971—2010年中国和各区域不同年代各时次站点平均雷暴时数标准化数值的日变化(Y轴上的数值1.0 (灰虚线) 表示年代对应时次平均雷暴时数与该时次40年平均雷暴时数相同)

    Figure  8.  Variations of standardized average thunderstorm hours per station at each hour per station in different decades over China and over different regions during 1971—2010 (The value 1.0 on the Y-axis (dashed gray lines) indicates that the average thunderstorm hours corresponding to the year are the same as the average thunderstorm hours for 40 years)

    图  9  1971—2010年中国总体和5个小区域 (具体见图1和图2的相应标注) 站点年平均雷暴时数标准化数值的逐年变化 (图例右侧数值为各区域40年站点年平均雷暴时数,其标准化值对应Y轴数值1.0)

    Figure  9.  Annual variations of standardized average thunderstorm hours per station over China and over five small regions (see Fig. 1 and Fig. 2 for details) during 1971—2010 (The values on the right of the legend are the annual average hours of thunderstorm of stations in regions for 40 years,and their standardized values correspond to the value 1.0 on the Y-axis)

  • [1] 巩崇水,曾淑玲,王嘉媛等. 2013. 近30年中国雷暴天气气候特征分析. 高原气象,32(5):1442-1449

    Gong C S,Zeng S L,Wang J Y,et al. 2013. Analyses on climatic characteristics of thunderstorm in China in recent 30 Years. Plateau Meteor,32(5):1442-1449 (in Chinese)
    [2] 国家气候中心. 2018. 中国灾害性天气气候图集(1961-2015年). 北京:气象出版社,89-99

    National Climate Center. 2018. Atlas of Hazardous Weather and Climate in China (1961-2015). Beijing:China Meteorological Press,89-99 (in Chinese)
    [3] 李进梁,吴学珂,袁铁等. 2019. 基于TRMM卫星多传感器资料揭示的亚洲季风区雷暴时空分布特征. 地球物理学报,62(11):4098-4109 doi: 10.6038/cjg2019M0687

    Li J L,Wu X K,Yuan T,et al. 2019. The temporal and spatial distribution of thunderstorms in Asia monsoon region based on the TRMM multi-sensor database. Chinese J Geophys,62(11):4098-4109 (in Chinese) doi: 10.6038/cjg2019M0687
    [4] 林建,曲晓波. 2008. 中国雷电事件的时空分布特征. 气象,34(11):22-30 doi: 10.7519/j.issn.1000-0526.2008.11.004

    Lin J,Qu X B. 2008. Spatial and temporal characteristics of thunderstorm in China. Meteor Mon,34(11):22-30 (in Chinese) doi: 10.7519/j.issn.1000-0526.2008.11.004
    [5] 刘全根,汤懋苍. 1966. 中国降雹的气候特征. 地理学报,32(1):48-65 doi: 10.3321/j.issn:0375-5444.1966.01.004

    Liu Q G,Tang M C. 1966. The climatic characteristics of hail in China. Acta Geogr Sinica,32(1):48-65 (in Chinese) doi: 10.3321/j.issn:0375-5444.1966.01.004
    [6] 马明, 陶善昌, 祝宝友等. 2004. 卫星观测的中国及周边地区闪电密度的气候分布. 中国科学D辑: 地球科学, 34(4): 298-306.

    Ma M, Tao S C, Zhu B Y, et al. 2005. Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Sci China Ser D: Earth Sci, 48(2): 219-229
    [7] 马瑞阳,郑栋,姚雯等. 2021. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报,32(3):358-369 doi: 10.11898/1001-7313.20210308

    Ma R Y,Zheng D,Yao W,et al. 2021. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci,32(3):358-369 (in Chinese) doi: 10.11898/1001-7313.20210308
    [8] 郄秀书,张其林,袁铁等. 2013. 雷电物理学. 北京:科学出版社,297pp

    Qie X S,Zhang Q L,Yuan T,et al. 2013. Lightning Physics. Beijing:Science Press,297pp (in Chinese)
    [9] 王婷波,周康辉,郑永光. 2020. 我国中东部雷暴活动特征分析. 气象,46(2):189-199 doi: 10.7519/j.issn.1000-0526.2020.02.005

    Wang T B,Zhou K H,Zheng Y G. 2020. Statistic analysis of thunderstorm characteristics in central and eastern China. Meteor Mon,46(2):189-199 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.02.005
    [10] 王学良,余田野,汪姿荷等. 2016. 1961-2013年中国雷暴气候特征及东亚夏季风影响研究. 暴雨灾害,35(5):471-481

    Wang X L,Yu T Y,Wang Z H,et al. 2016. Analysis on climate characteristics of thunderstorm in China and effect of East Asian summer monsoon on it during 1961-2013. Torrential Rain Disaster,35(5):471-481 (in Chinese)
    [11] Wilks D S. 2017. 大气科学中的统计方法. 朱玉祥, 译. 3版. 北京: 气象出版社, 134-136

    . Wilks D S. Statistical Methods in the Atmospheric Sciences. Zhu Y X, trans. 3rd ed. Beijing: China Meteorological Press, 134-136 (in Chinese)
    [12] 薛晓颖,任国玉,孙秀宝等. 2019. 中国中小尺度强对流天气气候学特征. 气候与环境研究,24(2):199-213 doi: 10.3878/j.issn.1006-9585.2018.17148

    Xue X Y,Ren G Y,Sun X B,et al. 2019. Climatological characteristics of meso-scale and micro-scale strong convective weather events in China. Climatic Environ Res,24(2):199-213 (in Chinese) doi: 10.3878/j.issn.1006-9585.2018.17148
    [13] 杨波,王园香,蔡雪薇. 2019. 我国华南江南春季雷暴气候特征分析. 热带气象学报,35(4):470-479

    Yang B,Wang Y X,Cai X W. 2019. Analysis on the climatological characteristics of thunderstorms in the south and southeast of China in spring. J Trop Meteor,35(4):470-479 (in Chinese)
    [14] 袁铁,郄秀书. 2004. 卫星观测到的我国闪电活动的时空分布特征. 高原气象,23(4):488-494 doi: 10.3321/j.issn:1000-0534.2004.04.011

    Yuan T,Qie X S. 2004. Spatial and temporal distributions of lightning activities in China from satellite observation. Plateau Meteor,23(4):488-494 (in Chinese) doi: 10.3321/j.issn:1000-0534.2004.04.011
    [15] 曾庆锋,力梅,兰红平等. 2018. 闪电定位数据替代雷暴日人工观测初探. 干旱气象,36(5):813-819,834

    Zeng Q F,Li M,Lan H P,et al. 2018. Preliminary research on replacement of thunderstorm days of artificial observation with lightning position detection data. Arid Meteor,36(5):813-819,834 (in Chinese)
    [16] 张家诚,林之光. 1985. 中国气候. 上海:上海科学技术出版社,411-436

    Zhang J C,Lin Z G. 1985. Chinese Climate. Shanghai:Shanghai Science and Technology Press,411-436 (in Chinese)
    [17] 张敏锋,冯霞. 1998. 我国雷暴天气的气候特征. 热带气象学报,14(2):156-162

    Zhang M F,Feng X. 1998. A study on climatic features and anomalies of the thunderstorm in China. J Trop Meteor,14(2):156-162 (in Chinese)
    [18] 中国气象局. 2003. 地面气象观测规范. 北京:气象出版社,151pp

    China Meterological Administration. 2003. Code for Surface Meteorological Observation. Beijing:China Meteorological Press,151pp (in Chinese)
    [19] Araghi A,Adamowski J,Jaghargh M R. 2016. Detection of trends in days with thunderstorms in Iran over the past five decades. Atmos Res,172-173:174-185 doi: 10.1016/j.atmosres.2015.12.022
    [20] Bielec Z. 2001. Long-term variability of thunderstorms and thunderstorm precipitation occurrence in Cracow,Poland,in the period 1896–1995. Atmos Res,56(1-4):161-170 doi: 10.1016/S0169-8095(00)00096-X
    [21] Cao Z H,Ma J M. 2009. Summer severe-rainfall frequency trend and variability over Ontario,Canada. J Appl Meteor Climatol,48(9):1955-1960 doi: 10.1175/2009JAMC2055.1
    [22] Changnon S A,Changnon D. 2001. Long-term fluctuations in thunderstorm activity in the United States. Climatic Change,50(4):489-503 doi: 10.1023/A:1010651512934
    [23] Enno S E,Post P,Briede A,et al. 2014. Long-term changes in the frequency of thunder days in the Baltic countries. Boreal Environ Res,19(5-6):452-466
    [24] Ma R Y,Zheng D,Zhang Y J,et al. 2021. Spatiotemporal lightning activity detected by WWLLN over the Tibetan Plateau and its comparison with LIS lightning. J Atmos Ocean Technol,38(3):511-523 doi: 10.1175/JTECH-D-20-0080.1
    [25] Pinto O Jr,Pinto I R C A,Ferro M A S. 2013. A study of the long-term variability of thunderstorm days in southeast Brazil. J Geophys Res Atmos,118(11):5231-5246 doi: 10.1002/jgrd.50282
    [26] Taszarek M,Allen J,Púčik T,et al. 2019. A climatology of thunderstorms across Europe from a synthesis of multiple data sources. J Climate,32(6):1813-1837 doi: 10.1175/JCLI-D-18-0372.1
    [27] Xia R D,Zhang D L,Wang B L. 2015. A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J Appl Meteor Climatol,54(12):2443-2460 doi: 10.1175/JAMC-D-15-0029.1
    [28] Xue X Y,Ren G Y,Xu X D,et al. 2021. The trends of warm-season thunderstorm and lightning days in China and the influence of environmental factors. J Geophys Res Atmos,126(15):e2021JD034950
    [29] Yang X L,Sun J H,Li W L. 2015. An analysis of cloud-to-ground lightning in China during 2010-13. Wea Forecasting,30(6):1537-1550 doi: 10.1175/WAF-D-14-00132.1
    [30] Zhang Q H,Ni X,Zhang F Q. 2017. Decreasing trend in severe weather occurrence over China during the past 50 years. Sci Rep,7:42310 doi: 10.1038/srep42310
    [31] Zheng Y G,Chen J,Zhu P J. 2008. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer. Chin Sci Bull,53(10):1574-1586
  • 加载中
图(9)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  15
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 录用日期:  2022-01-05
  • 修回日期:  2021-10-18
  • 网络出版日期:  2021-10-25

目录

    /

    返回文章
    返回