一种基于卫星遥感与地面测站数据融合技术的雪深动态反演方法
A dynamic approach to retrieving snow depth based on the technology of integrating satellite remote sensing and in situ data
-
摘要: 提出了一种新的基于被动微波遥感和地面测站数据融合技术的雪深动态反演方法.这种新方法不再依赖单一的地面测站数据或卫星遥感数据,而是利用它们联合建立雪盖可信度指数,共同确定雪盖分布;然后在此基础上采用时空距离权重法设定反演系数动态参数化方案,反演雪深.这种雪深反演方法具有以下特点:针对不同时空条件下反演系数的动态差异问题,提出利用实时测站观测雪深,灵活调整雪深反演系数的解决方案,使反演系数具备随时空动态调整的能力,这是与静态反演方法最大的区别;充分利用了被动微波遥感数据时空连续性好的优势,能够在测站稀少的西部高山地区反演出空间分辨率相对较高的雪深数据,这是地面观测无法做到的.初步检验结果显示,该方法较明显地提高了中国西部高原地区和东部雪盖南缘区的反演精度,并克服了原有融合方法在中国西部雪盖面积偏小的问题,有效避免了静态反演方法在高山地区严重高估而平原地区低估雪深的问题,实现了被动微波遥感和地面观测数据的有效融合,扩大了雪深监测的有效范围Abstract: A new dynamic approach to retrieving snow depth is developed based on integration of passive microwave remote sensing and in situ data.First,the snow-cover confidence index is established by use of both the passive microwave remote sensing and in situ data to identify the snow cover; second,a new dynamic parameterized scheme (the distance weighted method) is developed based on the index.The characteristics of the snow-depth retrieval approach arc as follows:on the one hand, for the difference issue of retrieval coefficients in different spatial-temporal circumstances,a solution is proposed that retrieval coefficients arc able to be adjusted according to real-time observed snow depth,which is the biggest difference from static retricval approaches;on the other hand,the advantage of spatial-temporal continuity of the passive microwave remote sensing da-to has been fully exploited,being able to retrieve the snow depth with relative high resolution and precision in the west China where few stations arc located.The results show that the approach implements the efficient integration of passive microwave remote sensing and observed data, exerts the advantages of different source data, improves obviously the retrieval precision in the western part of China and the south marginal regions of snow cover in eastern China, and solves the question in the old integrating approach that the area of snow cover was always relatively smaller than normal in the west China, amplifying the detectable coverage area of snow depth.In contrast to the static retrieval approach,the dynamic retrieval approach avoids efficiently the question that snow depth was overestimated in mountain regions and underestimated in plain regions.
-
Keywords:
- Snow depth /
- Snow cover /
- Retrieving /
- Passive microwavc remote sensing /
- the Tibetan Plateau
-
-
车涛,李新,高峰.2004.青藏高原积雪深度和雪水当量的被动微波遥感反演.冰川冻土,26(3):363-368 陈爱军,刘玉洁,杜秉玉.2005.应用AMSU资料监测中国地区雪盖的初步研究.应用气象学报,16(1):35-44 陈乾金,高波,李维京等.2000.青藏高原冬季积雪异常和长江中下游主汛期旱涝及其与环流关系的研究.气象学报,58(5):582-595 冯锦明,赵天保,张英娟.2004.基于台站降水资料对不同空间内插方法的比较.气候与环境研究,6(2):261-277 李培基.1996.喜马拉雅山积雪与印度季风降水呈明显反相关关系的商榷.气象学报,54(3):379-384 李晓静,刘玉洁,朱小祥等.2007.利用SSM/I数据判识我国及周边地区雪盖.应用气象学报,18(1):12-20 李新,车涛.2007.积雪被动微波遥感研究进展.冰川冻土,29(3):487-496 刘玉洁,郑照军,王丽波.2003.我国西部地区冬季雪盖遥感和变化分析.气候与环境研究,8(1):114-123 罗勇.1995.青藏高原冬春季雪盖对东亚夏季大气环流影响的研究.高原气象,14(4):505-512 吴洪宝,吴蕾.2010.气候变率诊断和预测方法.北京:气象出版社,400pp 延昊,张佳华.2008.基于SSM/I被动微波数据的中国积雪深度遥感研究.山地学报,26(1):59-64 杨秀春,曹云刚,徐斌等.2009.多源遥感数据协同的我国草原积雪范围全天候实时监测.地理研究,28(6):1704-1712 张佳华,吴杨,姚凤梅.2008.卫星遥感藏北积雪分布及影响因子分析.地球物理学报,51(4):1013-1021 赵亮,朱玉祥,程亮等.2010.遥感-测站相结合的动态雪深反演方法初探.应用气象学报,21(6):685-697 Akyurek Z, Hall D K, Riggs U A, et al. 2010.Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey. Int J Remote Sensing, 31(14):3727-3744
Armstrong R L, Brodzik M J. 2001. Recent Northern Hemisphere snow extent; A comparison of data derived Irom visible and microwave satellite sensors. Ueophys Res Lett, 28(19):3673-3676
Armstrong R L, Knowles K W, Brodzik M J,et al. 2003. DMSP SSM/I Pathfinder daily EASE-Urid Brightness temperatures. Boulder, Colorado USA; National Snow and Ice Data Center, Digital media
Brubaker K L, Pinker R, Deviatova E. 2005. Evaluation and comparison of MODIS and IMS snow cover estimates for the continental United States using station data. J Hydrometeor, 6(6) 1001-1017
Chang A T C,Foster J L, Hall D K, et al. 1992. The use of micro-wave radiometer data for characterizing snow storyge in western China. Ann Ulaciol, 16: 215-219
Chang A T G,Foster J L, Hall D K. 1987.Nimbus-7 SMMR derived global snow cover parameters. Ann Glaciol, 9: 39-44
Chen C,Nijssen B, Guo J,et al. 2001. Passive microwave remote sensing of snow constrained by hydrological simulations. IEEE Trans Geosci Remote Sensing, 39(8):1744-1756
Cohen J L, Entekhabi D. 1999. Eurasian snow cover variability and Northern Hemisphere climate predictability. Ueophys Res Lett, 26(3):345-348
Cohen J L, Saito K. 2003. Eurasian snow cover, more skillful in predicting U. S, winter climate than the NAO/AO?. Ueophys Res Lett, 30(23):doi:10. 1029/2003UL018053
Cressman U P. 1959. An operational objective analysis system. Mon Wea Rev, 87(10):367-374
Foster J L, Sun C J,Walker J P, et al. 2005. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing Environ, 94(2):187-203
Foster J L, Hall D K, Eylander J B, et al. 2007. Blended visible(MODIS),passive microwave (AMSR-E)and scatterometer(QuikSCAT) global snow products//Proceedings of the 64th Annual Eastern Snow Conlerence. St Johris Newfoundland, 27-36
Foster J L, Hall D K, Eylander J B, et al. 2011. A blended global snow product using visible, passive microwave and scatterometer satellite data. Int J Remote Sensing, 32(5):1371-1395 Frei A, Robinson D A. 1999. Northern Hemisphere snow extent Regional variability 1972-1994.
IntJ Climatol, 19(14):1535-1560 Grody N C,Basist A N. 1996. Global identification of snowcover using SSM/I Measurements. IEEE Trans Geosci Remote Sensing, 34(1):237-249
Hall D K, Riggs U A. 2007. Accuracy assessment of the MODIS snow products. Hydrol Process, 21(12):1534-1547
Hall D K, Foster J L, Kumar S, et al. 2012. Improving the accuracy of the AFWA-NASA(ANSA) blended snow-cover product over the Lower Ureat Lakes region. Hydrol Earth Syst Sci Discuss, 9(1):1141-1161
Hellrich S R, McNamara D, Ramsay B H, et al. 2007. Enhancemenu to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System(IMS).Hydrol Process, 21(12):1576-1586
Kelly R E, Chang A T, Tsang L, et al. 2003. A prototype AMSRE global snow area and snow depth algorithm. IEEE Trans Geosci Remote Sensing, 41(2):230-242
Kelly R E J. 2009. The AMSR-E snow depth algorithm: Description and initial results. J Remote Sens Soc Japan (ULI/AMSR Special Issue),29(1):307-317
Kongoli C,Dean C A, Hellrich S R, et al. 2006. The retrievals of snow cover extent and snow water equivalent Irom a blended passive microwave-interactive multisensor snow product//Proceedings of the 63rd Eastern Snow Conference. Newark, 89-103
Pulliainen J,Hallikainen M. 2001. Retrieval of regional snow water equivalent Irom space-borne passive microwave observations. Remote Sensing Environ, 75(1):76-85
Yasunari T. 2007. Role of land-atmosphere interaction on Asian monsoon climate. J Meteor Soc Japan, 858; 55-75
计量
- 文章访问数: 3632
- HTML全文浏览量: 12
- PDF下载量: 2995