大气粒子散射相函数的参数化方案比较及其改进
Comparisons and improvement of parameterization schemes for the scattering phase function of atmospheric particles
-
摘要: 大气粒子散射相函数的参数化是大气辐射传输参数化的重要组成部分。文中全面比较了大气粒子的Henyey-Greenstein(HG)方案和双Henyey-Greenstein(DHG)方案,并在四流球谐函数展开累加法中,应用这两种相函数参数化方案计算气溶胶、云、霾粒子的反射率、透射率或吸收率。该研究结果表明:HG方案无法表现相函数的后向峰值,因而其计算的大气粒子反射率和透射率精度较差;DHG方案能较好地表征相函数的整体特征,但是该方案计算的相函数易出现后向异常峰值或为负值,并导致计算得到的气溶胶、云、霾粒子的反射率和透射率精度甚至会低于HG方案。对DHG方案进行进一步研究,提出了改进的DHG方案(MDHG)。MDHG方案计算结果稳定,并能很好表征相函数的前向和后向峰值的特征,其计算的大气粒子的反射率和透射率精度也较高。因此,MDHG方案是一种理想的相函数参数化方案。
-
关键词:
- 相函数 /
- 参数化 /
- Henyey-Greenstein(HG)方案 /
- 双Henyey-Greenstein(DHG)方案 /
- 改进的DHG(MDHG)方案 /
- 四流球谐函数展开累加法
Abstract: The parameterization of the scattering phase function of atmospheric particles is an important part of the radiative transfer parameterization. The accuracy of Henyey-Greenstein (HG) scheme and Double Henyey-Greenstein (DHG) scheme are examined systematically. These two schemes are applied in the four-stream spherical harmonic expansion adding method to calculate the reflection/transmission/absorption of aerosols, clouds and haze particles. Results show that the HG scheme cannot realistically describe the backscattering pattern of the phase function, thereby reducing the accuracy of the calculated reflection and transmission of atmospheric particles.The peak of forward scattering and backscattering can be well represented by the DHG scheme in some cases. However, the DHG scheme often leads to abnormal backscattering peak or negative values of the phase function, which is unrealistic. In this case, the accuracy of reflection and transmission calculated by the DHG scheme are lower than those by the HG scheme.For this reason, a modified DHG scheme (MDHG) is proposed in this study to improve the phase function parameterization.The modified scheme is stable, and the traits of forward scattering and backscattering are well characterized.In addition, errors of reflection and transmission calculated by the improved scheme are smaller. Results of the study indicate that the MDHG scheme is appropriate for parameterizing the phase function. -
-
荆现文, 张华. 2012. McICA云-辐射方案在国家气候中心全球气候模式中的应用与评估. 大气科学, 36(5): 945-958. Jing X W, Zhang H. 2012. Application and evaluation of McICA cloud-radiation framework in the AGCM of the national climate center. Chin J Atmos Sci, 36(5): 945-958 (in Chinese) 邱金桓. 1998. 一个改进的δ-Eddington近似. 科学通报, 43(16):1712-1716. Qiu J H. 1999. An improved δ-Eddington approximation. Chin Sci Bull, 44(4):304-309 许尤福, 赵凤生, 闵玉秋. 2011. 平面平行大气中偏振辐射传输的数值计算. 气象学报, 69(5): 912-921. Xu Y F, Zhao F S, Min Y Q. 2011. Numerical calculations for the vector discrete-ordinate radiative transfer in a plane-parallel atmosphere. Acta Meteor Sinica, 69(5): 912-921 (in Chinese) 杨学胜, 沈元芳, 徐国强. 2009. 辐射方案对GRAPES全球模式的影响. 大气科学, 33(3): 593-599. Yang X S, Shen Y F, Xu G Q. 2009. The impacts of radiation schemes on the GRAPES global model. Chin J Atmos Sci, 33(3): 593-599 (in Chinese) 张峰. 2013.气候变化中辐射传输计算与外强迫因子反演研究 [D].北京: 中国科学院大学, 122pp. Zhang F. 2013. Radiative transfer parameterizations and reconstruction of driving forces in climate change[D]. Beijing: University of Chinese Academy of Sciences, 122pp (in Chinese) 张梦, 王宏, 黄兴友. 2014. NASA/Goddard长波辐射方案在GRAPES_Meso模式中的应用研究. 大气科学, 38(3): 603-614. Zhang M, Wang H, Huang X Y. 2014. Application research of the NASA/goddard longwave radiative scheme in the GRAPES_Meso model. Chin J Atmos Sci, 38(3): 603-614 (in Chinese) Fu Q, Liou K N, Cribb M C, et al. 1997. Multiple scattering parameterization in thermal infrared radiative transfer. J Atmos Sci, 54(24):2799-2812
Fu Q, Thorsen T J, Su J, et al. 2009. Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations. J Quant Spectrosc Radiat Transfer, 110(14-16): 1640-1653
Garcia R D M, Siewert C E. 1985. Benchmark results in radiative transfer. Transp Theory Stat Phys, 14(4): 437-483
Henyey L C, Greenstein J L. 1941. Diffuse radiation in the Galaxy. Astrophys J, 93:70-83
Kattawar G W. 1975. A three-parameter analytic phase function for multiple scattering calculations. J Quant Spectrosc Radiat Transfer, 15(9): 839-849
King M D, Harshvardhan. 1986. Comparative accuracy of selected multiple scattering approximations. J Atmos Sci, 43(8):784-801
Kylling A, Stamnes K, Tsay S C. 1995. A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media. J Atmos Chem, 21(2):115-150
Li J, Ramaswamy V. 1996. Four-stream spherical harmonic expansion approximation for solar radiative transfer. J Atmos Sci, 53(8):1174-1186
Li J, Dobbie J S, Raisanen P, et al. 2005. Accounting for unresolved clouds in a 1-D solar radiative-transfer model. Quart J Roy Meteor Soc, 131(608):1607-1629
Li J, Barker H, Yang P, et al. 2015. On the aerosol and cloud phase function expansion moments for radiative transfer simulations. J Geophys Res, 120(23): 12128-12142, doi: 10.1002/2015JD023632
Liou K N, Fu Q, Ackerman T P. 1988. A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J Atmos Sci, 45(13):1940-1947
Lu P, Zhang H, Li J. 2009. A new complete comparison of two-stream DISORT and Eddington radiative transfer schemes in a real atmospheric profile. J Quant Spectrosc Radiat Transfer, 110(1-2):129-138
Mishchenko M I, Travis L D. 1994. T-matrix computations of light scattering by large spheroidal particles. Opt Commun, 109(1-2): 16-21
Pruppacher H R, Klett J D. 1996. Microphysics of Clouds and Precipitation. Dordrecht Boston: Kluwer Academic Publishers, 976pp
Qiu J H. 1999. Modified delta-eddington approximation for solar reflection, transmission, and absorption calculations. J Atmos Sci, 56(16):2955-2961
Sokolik I N, Toon O B, Bergstrom R W. 1998. Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths. J Geophys Res, 103(D8): 8813-8826
Stamnes K, Tsay S C, Wiscombe W, et al. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt, 27(12):2502-2509
Wiscombe W J. 1977. The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J Atmos Sci, 34(9):1408-1422
Yang P, Feng Q, Hong G, et al. 2007. Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J Aerosol Sci, 38(10): 995-1014
Zhang F, Li J. 2013a. Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J Atmos Sci, 70(10): 3084-3101
Zhang F, Shen Z, Li J, et al. 2013b.Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. J Atmos Sci,70(3). 794-808
Zhang H, Jing X, Li J. 2014. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geosci Model Dev, 7(3): 737-754
Zhang H, Wang Z L, Zhang F, et al. 2015. Impact of four-stream radiative transfer algorithm on aerosol direct radiative effect and forcing. Int J Climatol, 35(14): 4318-4328, doi: 10.1002/joc.4289
Zhao J Q, Shi G Y, Che H Z, et al. 2006. Approximations of the scattering phase functions of particles. Adv Atmos Sci, 23(5): 802-808
计量
- 文章访问数: 1951
- HTML全文浏览量: 32
- PDF下载量: 1855